

8K ON BOARD MEMORY!

$5 K$ RAM. 3 K ROM of 4 K RAM, 4 K ROM (link selectable). Kit supplied with 2 K RAM,

2 KEYBOARDS

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code

GRAPHICS!

64 character graphics option - includes transistor symbols! Only $£ 18.20$ extra

MEMORY MAPPED

high resolution VDU circuitry using discrete memory to give 32 lines for 64 characters.

KANSAS CITY

Increased capacity at our Big New
Factory means many prices down! All others frozen!

2 MICROPROCESSORS
2 MICROPROCESSORS -including all 78 of the 8080 controls the MM57109 number cruncher. Functions include,+- squares cruncher. Functions include + , - in squares Range 10^{-99} to 9×19^{99} to 8 figures plus 2 exponent digits

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

with extended mathematical capability. Only 2 K memory used but more powerful than most 8 K Basics

1K MONITOR

resident in EPROM

SINGLE BOARD DESIGN

Even keyboards and power supply eircuitry on the superb quality double sided plated through-hole PCB

COMPLETE KIT NOW ONLY $\mathbf{E 2 2 5}+$ VAT

POWERTRAN
 PSI Comp 80.Z80 Based powerful scientific computer Design as published in Wireless World

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction. IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2 K Basic and 1 K monitor in EPROMS and of course, wire, nuts, bolts, etc.

Value Added Tax not included in prices
PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement unti September 30th, 1980. If this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus £1.00 hendling and documentation.
U.K. ORDERS: Subsequent to $15 \%^{*}$ surcharge for VAT. NO charge is made for carriage. "Or current rate if changed.
SECURICOR DELIVER: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your computer from the factory, call at Sales Counter. Open 9 a.m. -12 noon, $1-4.30$ p.m Monday - Thursday.

KIT ALSO AVAILABLE AS SEPARATE PACKS
For those customers who wish to spread their purchase or build a personalised system the kit is available as separate packs eg. PCB $\left(16^{\prime \prime} \times 12.5^{\prime \prime}\right) £ 43.20$. Pair of keyboards $£ 34.80$. Firmware in EPROMS E30.00. Toroidal transformer and power supply components
 finished) $\mathbf{£ 2 6 . 5 0}$. P.S. Will greatly enhance any other single board computer including OHIO SUPERBOARD for which it can be readily modified. Other packs listed in our FREE CATALOGUE.
PSI COMP 80 Memory Expansion System
Expansion up to 32 K all inside the computer's own cabinetl By carefully thought out engineering a mother board with buffers and its own power supply (powered by the computers transformer) enables up to 38 K RAM or $8 K$ ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.
Mother Board Fibre glass double sided plated through $£ 39.90$ hole P.C.B $8.7^{\prime \prime} \times 30^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socket to connect to expansion plug Fibre glass double sided plated through hole
$\begin{array}{ll}\text { 8K Static } & \text { Fibre glass } \\ & \text { P.C.B. } \\ \text { RAM Board } & 5.6^{\prime \prime} \times 4.8^{\prime \prime}\end{array}$
Set of components including IC sockets, plug
を and socket but excluding RAMs.
Complete set of board, components, 16 RAM
. 20 Fibre glass double sided plated through hole $\begin{array}{ll}8 \mathrm{~K} & \text { Fibre glass doubl } \\ \text { ROM Board } & \text { P.C.B. } 5.6^{\prime \prime} \times 4.8^{\prime \prime}\end{array}$

Set of components including IC sockets, plug £12.40
£10.70
2708 ROM (8 required)
£8.00
Complete set of board, components, 8 ROM's
£78.50

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND TELEPHONE NUMBER UNCHANGED

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3MN

ANDOVER
(0264) 64455

computing today

CPUs for all p. 66

drop a line home p. 63

slip in a disc? p. 51

VOL 2 No 6
AUGUST 1980

EDITORIAL \& ADVERTISEMENT OFFICE 145 Charing Cross Road, London WC2H OEE. Telephone 01-437-1002/7.

Editor : Ron Harris B.SC
Assistant Editor : Henry Budgett
Creative Director : Diego Rincón
Drawing Office Manager : Paul Edwards
Group Advertisement Manager : Christopher Surgenor
Advertisement Manager : Bill Delaney
Managing Director : T.J.Connell
NEWS 6
More micro happenings and some books on view BUSINESS NEWS 8
PRINTOUT 10
Some of your views expressed
79-09 12
A new CPU for an old system?
ROUTE SEARCH 15
KEYBOARD UPGRADE 18
SYSTEMATIC PROGRAMMING 23
The logical answer
PEA GAME 27
One out of three
MULTI-PURPOSE RECORDS 29
File facts in business-like way
BASIC LIFE 34
An unusual variation
ACORN CLOCK 35
Keeping time and counting properly MICROLINK 36
Keeping control of the outside world
MICRO DIARY 40
Day-to-day happenings on tape
MACHINE CODE 44
Coding for programs WITHOUT BASIC!!
CONLAN 47
String a new language together
THE FLOPPY DISC 51
Storage for the masses of the massesMICROGRAPHICS REPORT56Colourful add-on to a basic systemPROBLEM PAGE58
A polite solution to a rude problemCOMPUTER GRAPHICS63The art of programming pretty and wellBUYERS GUIDE66Part One: Systems, systems and more systems

MICROTAN 65

The Microcomputer that thinks it's a Mini

The MICROTAN kit has won widespread acclaim for it's super presentation.

High quality, plated thrul hole printed circuit board, solder resist and component legends. Full set of I.C. sockets. 64 way D.I.N. edge connector. 6502 microprocessor. IK monitor TANBUG. iK ray for user programne, stack and display menory. vou alphauneric display. Intelli gent keybaard socket. A4 MICROTAN 65 system file binder. ${ }^{136}$ page, bound, A4 size users harduare/software manual with constructional details and sample programes. Logic and discrete components to fully expand MICROTAN 65 .

TANEX

from $£ 43.00$ pus vat
Fully expanded tanex offers; 7k raM, 6K roM, 8K Microsofy Basic, 32 parallel I/0 lines, two TTl serial I/0 ports, a third serial I/0 port with RS232 20nA, full moden control and 16 progranabable baud rates, four 16 bit counter timers, cassette interface, data bus buffering and menory mapping. Ready built the mini-nother board has two 64 way female connectors, a 4 way power supply connector and a reset switch on board. It is used to connect Microtan to tanex, and will fit inside the aini systen rack. f10.00 plus var.

Full System Rack

from $£ 49.00$ pus vat
For the man that has everything! 19 inch wide systen rack which accepts microtan 65, tanex, TANRAM, NiNE FURTHER expansion boaros, tanoos ano the syster poner supply.
Available in many formats e.g. Individual module front panels, full width hinged front panel, back panel with or without connectors, etc.
We have produced a mini-rack which accepts Microotan 65 and Tanex, it has an integral power supply, just plug it into the mains and anay you go! Finished in Black/Tangerine/ Brushed aluminiun, it gives your mini-systen the professional finish.
£43.00 plus VAT

Full ASCII keyboard

$£ 49.00$ pus vat

The ascril keybard includes a numeric keypad and ribbon cable connector. Available only as fully built and tested.
Cabinet available at $£ 20.00$ plus vat.

- An excellent kit
- The concept of TANBUG is excellent
- Rock steady VDU
- The extremely reasonable cost has not been achieved by skimping on design
- A gem of a product
- An excellent introduction to 6502 based systems
- A 6502 based microcomputer.
- Superb 1 K monitor TANBUG.
- Expansion boards to make a full system.
- Fully socketed
- 1 K RAM for user programme, stack and display memory
- 136 page software/hardware users manual, with example programmes and A4 size!
- Intelligent keyboard socket, accepts 20 key keypad or full ASCII keyboard
- Full alphanumeric video display on an un-modified domestic TV - makes
programming much easier
- Optional lower case pack
£9.48 + vat
- Optional chunky graphics pack
£6. 52 + vat

BROCHURE AVAILABLE
ON REQUEST, 12p stamp

BARCLAYCARD

tangerine computer systems lid.,

MICRO METER

This nifty little DPM has an extra trick up its sleeve, not only can it display $41 / 2$ digits and transmit a 12 bit binary code to a computer but it appears to have acquired an extra digit on its display between the copy and the photo! The unit is designed to output in either tristate TTL or via a UART making
it ideal for remote and visual monitoring of equipment, etc. Price is quoted at $£ 79$ less VAT but whether this includes the free digit we're not sure. Check the spec on this one by contacting John Nichols or Keith Pauley at Office Suite 1, Coach Mews, The Broadway, St Ives, Huntingdon, Cambs PE17 4BN or ring on 0480-63570.

PORTABLE PROCESSOR

Newly launched, and soon to be publicly unveiled, is a portable data terminal from Microdata Computers. Based on a dual processor system, Z80 and F8, and using the Burroughs flat screen plasma display the system is fitted into an aluminium attache case. Supplied with 16 K of RAM as standard and with an obtional
extra 16 K the system also uses bubble memory, Texas brand, and has a 1200 Baud CUTS interface for cassette. The system is expected to cost from $£ 3500$ and potential users should contact Microdata at Belvedere Works, Bilton Way, Pump Lane Industrial Estate, Hayes, Middlesex or ring Mr B Lumb on 01-848 9871

FLEXY SYSTEM

Yet more modules have been added to the RCS Microsystems 6800 based system including twin parallel $1 / \mathrm{O}, 32 \mathrm{~K}$ dynamic RAM, PROM programmer and five special purpose interfaces for printers, discs, digital cassette and VDU. Adding these to the existing range gives a very flexible OEM or educational system that is rack mounted and can be modified or adapted to suit individual requirements. All descriptions of the system and its component parts can be found by contacting David Mapes at RCS Microsystems, Gresham House, Twickenham Road, Feltham, Middx TW13 6 HA or by phoning on 01-89 4761.

DIGITIZING DOOBRY

People with a need for digits cartographers, designers and the like - might be interested in a digitizing table from Sintrom. Manufactured by Perex the unit contains all the necessary active electronics in an $11^{\prime \prime}$ by $17^{\prime \prime}$ by $1.7^{\prime \prime}$ thick block. You can select either Imperial mode with an accuracy of $.005^{\prime \prime}$ on a resolution of $.001^{\prime \prime}$ or metric mode with either .025 mm or .01 mm resolution with accuracy of .125 mm . Readings are taken with either a cross-hair cursor or a stylus and the output is sent through an RS232 interface. Two models are available and prices range from $£ 1300$ to $£ 2600$. For details contact Sintrom Electronics at Arkwright Road, Reading Berks

COMPUTERS AND INSTRUMENTATION

The sub-heading on the cover of this volume gives the game away, "a practical handbook of measurement, interfacing and control circuits." This is not a book for bedtime readers but a solid reference manual that could easily find its way on the shelves of technicians, servicemen and indeed anyone with an interest in connecting computers to things. The book starts with a gentle introduction to computers and their structure - both hardware and software - and progresses straight into the world of analogue signals. Brief point of objection in the spelling of analogue, they have used the American version 'analog' which I always thought was a Sci-Fi magazine, and as the author hails from Manchester it is rather odd. Having progressed from analogue to digital and beyond the book comes to rest at Chapter 5, or to put it another way my review copy now falls open at these pages, because this is the section on standard interfaces. It is worth buying the book for this chapter alone, as it covers all those wonderfully brief names like V24, BS4421 (rare in the extreme), IEEE 488 (PET's bus is based on this) and a variety of brief notes on others like CAMAC. For anyone who seriously involves himself in interfacing this is the chapter that makes the book. The following chapter is for people who want to build instrumentation interfaces and, like the rest of the book, contains circuit ideas, examples and techniques. The final chapter gives itself over to speculation on "the ultimate personal computer" and makes interesting - and at times a little amusing - reading. The final paragraph is almost guaranteed to raise a chuckle from even the

TRITON WITH TEETH

Newly launched by Transam, of Triton fame, is a new S 100 based system that can start from as little as $£ 195$. Based on the Z80 processor it is a single board system with five S 100 slots to the new IEEE standard and is called TUSCAN. Sold in either kit or built form it offers a wide variety of options in both hardware and software and can be cased in a neat housing which will also be used to house a fully expanded Triton with motherboard etc. Also newly announced by the company is a version of Pascal that will run on the PET, the product is Commodore approved and is supplied on a mini disc for $£ 120$ complete with documentation. For full details on both these new pro-
ducts contact Graham Clifton or Nigel Stride at 12 Chapel Street, London NW1 5DH or ring on 01-402 8137. Transam's

Triton is also making a bid for top twenty placings in the LP charts with its graphics displays
currently featuring on the new Roy Harper album, The Unknown Soldier. We haven't obtained a copy of the LP yet so we can't say whether the micro influence has affected his work, last time we heard he was still into sheep!
most serious of readers. As is usual in works of a reference nature there are pages of useful information headed Glossary and it is more than likely that this will become yet another "bible" when the going gets tough in the editorial offices. Overall then, a book with an undoubtedly serious content but lightened by the approach taken and certainly full of vitally relevant information. Computers and Instrumentation is written by A Carrick, published by Heyden, ISBN 085501452 0, and costs $£ 9.75$ in hardback. Heyden and Son Ltd can be contacted at Spectrum House, Hillview Gardens, London NW4 $2 J Q$.

DEVELOP THE Z80

Midwich, the SCS Ates distributor for the Nanocomputer, have just announced a new, low-cost development system for the Z80 based around the same board but in a fully configured state. The system included 16 K RAM, 10 K ROM, EPROM programmer, video display interface and dual cassette drives together with a number of $1 / O$ interfaces. The complete system with full documentation will sell for £1495 excluding VAT and offers a viable alternative to the more expensive disc based type of system. For details of this and all the other SGS Ates range including the Nanocomputer contact Midwich at 9 Churchgate Street, Old Harlow, Essex CM17 OIS or ring David Watson on 0279-412605

BUMPER CROP

Included in a new brochure from Microsense, the Apple distribution arm of Data Efficiency, is a wealth of add-ons and software for the Apple user. Software information is also included along with details of Apple compatible printers such as the Texas 810 and the Paper Tiger. For your copy contact your local authorised Apple dealer or mail direct to Microsense at Maxted Road, Maylands Avenue. Hemel Hempstead, Herts HP2 7LE

THE PERSONAL COMPUTER BOOK

Up until the publication of this book, which we actually managed to get in proof form for early review, there has been no truly "British" look at our personal computer market. Owing to companies like Commodore, Tandy and Apple - to name but three - invading our shores with American equipment one could be forgiven for thinking that there wasn't a British view of the market! This volume explodes that misconception and sets out in very entertaining and readable form the facts on owning a computer. The book takes you through the stages of education necessary to understand the concept of actually owning a computer, what you are likely to be able to do with it and what you can't expect to do with it. Whilst some stages may be trivial in some people's estimation it can be said that the book makes no assumptions as to the readers knowledge, not at all a bad thing. Once again the final chapters and the incredibly detailed Appendices are worth the price of the book on their own. Details are given on a vast range of computers,
peripherals and other exotic goodies together with addresses of computer clubs, manufacturers and bus specifications. Even if you own a computer already these chapters are worth obtaining for reference purposes as it is seldom that al! this information, so necessary for someone making their "first choice", is assembled in one publication. I strongly suspect that this will be the first of many such books to appear for the "home" market but, in this case at least, the first may well turn out to be the best. The book is to be published at the end of the month and will cost $£ 5.25$. The author, Robin Bradbeer is a lecturer at the Polytechnic of North London and is well known for his efforts in promoting personal computing which had led to the formation of the Association of London Computer Clubs and the holding of a privately organised Computer Fair in July this year. The book can be ordered direct from the publishers, Input Two-Nine, if you have difficulty in obtaining it locally. The address to write to is MCB Publications, 198/200 Keighley Road, Bradford, West Yorkshire BD9 4JQ quoting the ISBN 0905897560

MOSTEK
 MISTOOK

There it was in bold type right across the top of the press release, PDP-9 add in memory system. Heads were scratched, minds blown and books consulted. Had DEC, that company of minis, produced a new computer? Well, there was only one way of finding out, ring Mostek from whom the release was released. "What's this new PDP-9 then?" "what PDP-9? OH NO!" Oh yes best beloved how the mighty are fallen. When good old CT has a splng mistake a few tens of thousands may spot it, when a multinational like Mostek do it and then circulate it right round Europe and nobody spots it we begin to feel that there's no justice in the world any more. The actual news item concerned the launch of a new Omnibus compatible memory system for " 8 s " of the A.E.F and M types and was of 32 K by 12 configuration. The board only needs 5 V and single unit costs are $\$ 4100$. For details of this and all Mosteks other goodies you should contact Mostek (UK) Ltd at Masons House, 1 Valley Drive, Kingsbury Road, London NW9 or ring on 01-204 9322

SIMULATE
 A ROM

A new personality module has been added to the range available for the International Microsystems IM 1010 Universal Programmer. The new simulator can emulate any 4 or 8 bit PROM between 32 bytes and 4 K bytes in size. The powerful inbuilt editing system allows debugging of programs and the program size can be configured to suit the operator, for example a 4 K byte program could occupy one 2732 , two 2716 or four 2708 s. The unit can be replaced by the appropriate module for the chosen PROM and the program can then be burnt in. The Universal Pro-grammer incorporates a full keyboard and a gas discharge display and is shipped as standard with 4 K of RAM, optional 16 K is available. There are also two RS232 interfacing ports with variable baud rate and these can be used for direct downloading of software. For further information on the range and their capabilities contact Micro-Image Technology at Green hill Industrial Estate, Riddings, Derby DE55 4DA Telephone enquiries can be answered on 0773-604411.

A CASE FOR TANDY?

The popular TRS 80 is used for many things from personal computing right up to small businesses but the one thing it lacks is a method of grouping all the component parts together. Tandy themselves do produce a rather utilitarian desk but a new product from Blandford Computers appears to be the ideal solution to the tangled problems of TRS 80 owners. The new case system is capable of housing three disc drives of the miniflop-
py type, the keyboard and all the necessary mains sockets. The whole unit is supplied complete with hardware as a package, a typical system with 32 K of RAM and three drives with VDU and printer would cost around $£ 1950$. All the hardware product is available separately and full details of this flexible packaging can be obtained direct from Blandford at Higher Shaftesbury Road, Blandford Forum, Dorset

CITY IN THE CITY

Right in the heart of decision making territory you'll find City Computer Systems, a team of computer and financial experts. Among their range of impressive software you'll find such packages as PMS, the Portfolio Management System. This online system, together with their Dealer Gateway, offers dealers and portfolio managers the access they require to make "buy-and-sell" decisions. If your day to day business is to do with the handling of trust funds or pensions or the like then you should contact City to see just what they have to offer in the way of on-line information systems. The range doesn't stop there though, they are into word and information processing and have, together with their sister company - Monotype International - developed a laser phototypesetting system based around the Vector Graphic MZ computer. For details of this many and varied company contact them at $1 / 2$ Laurence Pountney Hill, London EC4R OBA or ring Alec Trustram Eve on $01-6260824$.

SUNSHINE COMPUTING

Sun Computer Services have been appointed as a major UK distributor for the Interec range of business computers. Among the models are the twin Z 80 based Superbrain models QD at $£ 2650$ and DD at $£ 1950$ and the intelligent VDU, the Intertube II. Both the Superbrains feature twin floppy drives with 320K, 64 K of RAM, CP/M disc operating system and the $\$ 100$ bus. full hardware and software support will be given to the range and any interested customers should contact Paul Dockerill of Sun at 138 Chalmers Way. North Feltham Trading Estate, Feltham, Middlesex or ring on 01-751 6695

GET INTO FILMS

If you want to protect your documents from damage by heat, grease, dirt or abrasion then a new product from Print Lamination Products may be your answer. Available in a variety of standard widths it is a transparent polvester film that can be laminated onto printed materials such as directories, notices and maps to protect against wear. As well as the benefits of protection you can also write on the surface and wipe off later. If your documents need protection then write for details to Print Lamination Products, Newspaper House, High Road, Ickenham, Middx UB10 8LB or ring on Ruislip 31993

FORGING AHEAD

WITH PETAL

You may be forgiven for thinking that metal bashing and the computer were rather far removed from common ground. In the case of Mark Priest and Sons of Bristol you'd be very wrong. They have taken their accounts department into the eighties with a micro as a helping hand. Using PETAL, a PET based package, they can prepare tapes of sales information at the end of every month and send these to the ACT computer centre for processing by an ICL main-
frame. This saves time and also ensures a greater degree of accuracy as the PETAL package checks many of the common errors. The PET is rented at $£ 22$ per month and the actual processing costs only $£ 73$ because of the preparation done by the micro. For details of the ACT range of bureau and other computing services contact Chris Buckham on 021-454 0344 or write to ACT at 5-6, Vicarage Road, Edgbaston, Birmingham, B15 3ES

THE VITAL COMPONENT
Having just installed " n " thousand pounds of computer equipment you may find that although you have every last piece of hardware and software you still can't do anything with it. Well, you did remember to order blank discs, tapes and paper didn't you? You didn't! Willis to the rescue with their amazing new, full-colour catalogue of computer room supplies from lowly line printer paper to desks and storage
racks. Throw at least one of those manuals off the shelf and put this invaluable catalogue in its place, it's probably worth its weight in gold. For your free copy contact Willis Computer Supplies at PO Box 10 , South Mill Road, Bishops Stortford, Herts CM23 3DN or ring on 0279-506491 if you've just seen the last spare disc pack get used as a frisbee by your new operator!

SHARP MEAN BUSINESS

Sharp Electronics (UK) Ltd, the British arm of the company that makes the $\mathrm{MZ}-80 \mathrm{~K}$ personal computer is introducing a number of enhancements to the range as well as lowering the end-user prices. The new peripherals announced include an Interface unit that connects to the 50 way bus and costs $£ 99$. Having installed this you can then upgrade to twin, singlesided, double-density floppies with a capacity of 280 K . Also about to be launched is an 80 column, plain paper line printer capable of printing at 1.2 lines per second and handling all standard alphanumerics as well as a range of graphics. Prices of
these two add-ons are $£ 780$ for the discs and $£ 517$ for the printer. Along with the announcement of the new peripherals Sharp have also announced the new prices of their systems, $£ 480$ for $6 \mathrm{~K}, ~ £ 529$ for $18 \mathrm{~K}, £ 549$ for 22 K and $£ 599$ for the 34 K version. This means that a complete small business system with a 34 K machine, twin floppies and printer will sell for less than $£ 2000$. For further information on any of the range of Sharp equipment please contact Paul Streeter at Sharp Electronics (UK) Ltd., Thorp Road, Newton Heath, Manchester M10 9BE or ring on 061-205 2333.

ADDS UP

A neat desk mounted microcomputer system has been introduced to their range of business machines by ADDS (UK) Ltd. Costing from £4000 (less printer) it is based on an 8085A processor and is equipped with 52 K of RAM. There are options of two or three floppy discs of the $8^{\prime \prime}$ variety and these can be either single or double sided. A large quantity of software is available, some is included in the price, and the system also features a communications interface as standard for remote processor operation. Language support includes BASIC, FORTRAN and MicroCOBOL. For details of the new range contact ADDS at 137 High Street, New Malden Surrey or ring on 01-949 1272. Watch out for a new range of systems from ADDS soon with apparently remarkable expansion capabilities.

Dear Editor,

The letter from A.S.WADDINCTON "CT June $80^{\prime \prime}$ re the Mk14 highlights a dilemma which the thousands of owners of these kits now find themselves in.

Evidently with the arrival of the ZX80 the Mk14 has been dropped without any thought of phasing out with customer consideration in mind.

How long will the ZX80 be around?
However the Mk14 is a good experimenters system and it is a pity that S of C have decided to cut off the supply.

There are a number of enthusiastic Mk14 user groups and the national one is organised by:- Mr. G. Phillips, 8 Poolsford Road, London NW9 6HP.

Yours sincerely,
Cliff Clark.
16 Victoria Cardens,
Palm Grove,
Oxton, Birkenhead,
Merseyside L43 1TH.

Dear Sir,

Having just come out of a state of shock induced by H.Budgett's ZX80 bit, I would like to put pen to paper re Clive's number-cruncher, and the load of utter (insert printable adjective) which made up the article. Here goes!!

1) Why have a switch to ground the reset line?
2) My ZX80 is OK on our colour TV, so fork out for a decent one in future.
3) You say the VDU was 'adequate in definition'. It's a lot better than our Apple at work (and that's a proper monitor!!, esp. with a bit of green plastic on the front!!
4) 'The clock circuitry is not controlled by a crystal'.

Sob sob sob. My heart cries out to Mr B. Do you think anyone who buys a ZX 80 is going to give a monkeys about that??
5) 'The ZX80 can not refresh dynamic RAM'. I'm not too hot on hardware, but I'm certain Mr B could rig up a timer circuit on a RAM board for a quid or so (no doubt that's what uncle Clive will do on any dynamic add-on).
6) 'Any traditional programmer is not likely to like the single key programming'. I've been writing programs for about six years now (I'm 20), and it's the best thing since sliced bread.
7) Yes indeed, the manual is inadequate.
8) If Sinclair brings out a printer, Mr B's ASCII troubles will be over.
Most of Henry's bit was hardware moans, but the best thing about the ZX80 took up only a part of a line... IT'S CHEAP.

Thankyou and goodbye,
Steve Dean.
7B Northfield Close,
Littlemore,
Oxford OX4 4NH.
P.S. If you ever run another competition, could you offer Tina Boylan as first prize??

Dear Sir,

I would like to thank lan Sinclair for an invaluable series on the Mk 14, without which I, and no doubt many others would still be struggling.

Through 'messing about' on my Mk14 I have discovered a few 'pseudo ops'. Other owners may well have unburied some (or all) of them, and perhaps readers know of others they would like to contribute.
i. Having just switched on, type

0184, CO, CO
A random pattern will now appear. (See ii.) Press

ABORT, MEM, CO
The 'Store to Tape' routine is now reading information from the display, which explains what is happening.

Can somebody explain why the least significant bit lights up when information is read FROM the display?

The number of times the dash traverses the display is controlled by changing OFF8.
ii. Try typing in the following,

OFF9	$O D$
OFFA	00
OFFB	$O F$
OFFC	$X X$

Then starting from location OFXX type in the codes for an 8 digit message, in reverse order. Type in location 0185 and ' CO '
The message is displayed.
To be fair this is not really a pseudo op, but it does allow one to display a message without having to write a program.
iii. Type in

OFO2,
TERM.
For whatever byte is typed in, the equivalent pattern is displayed.
Try changing the contents of OFOC and OFOE.
David Brown. (16)
165 Edge Creen Lane,
Golborne,
Nr. Warrington,
WA3 3XQ.
Dear Sir,
With reference to the mathematical difficulty mentioned by Elaine Douse on Page 53 of the March issue, the problem is quite easily solved by a minor modification to the statement suggested.

If it is put in the following form then for two decimal places it produces the right answer every time. If more than two decimal places are required then the figure of .001 should be altered appropriately:

$$
x=\operatorname{INT}((x+.001) * 100) / 100
$$

As a relative beginner at computing I find your Magazine most helpful and time spent in the analysis of programs like the Home Finance one is, I find, very well spent indeed.

Yours faithfully,
Matthews \& Matthews
Chartered Surveyors.
13 Princes Street,
Dorchester, Dorset.
DT1 1 TW.

Dear Sir,
The April issue of Computing Today contained my description of PICO BASIC and a listing of the interpreter used to implement this language on an Mk14 to which extra RAM had been added. In its original form, however, PICO had a number of weaknesses. These became apparent after some use of the language. The three which caused most difficulty were these:

1. The method used to look at program lines was very laborious.
2. The Interpreter was stored in three separate blocks of RAM and was thus unnecessarily difficult to enter from tape.
3. There was no provision for the display of negative numbers.
These have been remedied in a new version of PICO. The new map of available RAM is as follows:

$$
\begin{array}{ll}
\text { OFF7 - OFFF } & \text { Monitor variables } \\
\text { OF50 - OFF6 } & \text { Serial data file } \\
\text { OF12 - OF4F } & \text { PICO variables } \\
\text { OFO0 - OF11 } & \text { Monitor variables } \\
\text { OB00 - OBFF } & \text { PICO program store } \\
\text { O200 - OFFF } & \text { Interpreter }
\end{array}
$$

The interpreter now occupies $11 / 2 \mathrm{~K}$ of continuous

RAM and can thus be entered from tape in one run of about six minutes.

The new system allows for only 28 program lines, compared with 56 previously, but in practice this has not proved to be too great a disadvantage. On the other hand there is now room for 1672 -figure numbers in the data file, compared with 77 in the old PICO, and 100 of these may be directly addressed by entering 00 to 99 in v0, giving the possibility of implementing a 10 by 10 array.

Error detection and correction is now much easier. If an error in syntax is found at run time the execution halts and the number of the faulty line is displayed. If Line is now entered the line itself is displayed. To correct it enter End followed by Input. The display is now ? and the correct line may be entered, followed by Line and End.

Anyone interested in a listing of the new PICO can contact me at the address below.

Yours sincerely,
J.G.Seal.

Creenwood Cottage,
Lower Bockhampton,
Dorchester,
Dorset DT2 8PZ.

Dear Ed.

Hi, okay, Computer games like 'Alien Invaders' and 'Startrek', 'Star Wars' are okay, but how about a game for all us Galactic Hitch-Hikers?

I've seen hikers weeping into their glasses of Janx Spirit about this inadequacy of computer games and believe me, salty Janx Spirit doesn't taste good at all say suitable for something like the Microtan 65 with expansion, or at least include a flowchart so you can play it on any machine.

I said Tangerine Microtan 65 'cos l've got one. Have the computer, once loaded introduce itself and print all commands after the phrase 'Hi there, this is Eddie your Shipboard computer' and 'I want to know I'm feeling just great guys' things like that, for the hiker's sake.

Well, surely it can't be too difficult?
Yours etc.,
Zaphod Beeblebrox's understudy,
the second greatest Guy in the universe,
Anthony John Shepherd,
Orchard Cottage,
Saville Hall Lane,
Dodworth, Barnsley,
Yorks. 575 3NG.
P.S. Your mag is the best Computer mag this side of Sirius
P.P.S. Did the man who put the Scratch button where it is on the Hewlett Packard 85 use to work for the Sirius Cybernetics Corporation?

Dear Sir,
As a result of your printing my letter in the April CT. I have found a fellow Nascom owner in Nairobi! Thankyou very much!

The answer to my question of how to CSAVE String arrays is very simple. The Nascom Microsoft BASIC does NOT distinguish between A and $A \$$ but treats them as the same variable. This can cause unexpected program crashes, but also means that CSAVE*A will save A\$ and CLOAD*A will reload it.

My Nascom 2 is now fully operational, except that it has a habit of giving errors in String functions when operating at 4 MHz with a wait sate (the BASIC will not work without the wait state). These errors occur most often 15 mins. after switch-on and are eliminated after changing to 2 MHz . I wonder if anyone else has experienced this, or knows a cure.

Regards,

David R. Green.
P.O. Box 50973 ,

Wood Ave., Nairobi,
Kenya.
P.S. It's time you did a comparative study on 'cheap' (ie under $£ 600$) matrix printers.

> Motorola's second generation CPU, the 6809, has been incorporated into the Newbear 77-68 system. We take a look at the Z80's strongest competitor and report on the implementation.

NewBear's 77-68 system has long been well regarded by those who like building computers as much as - or more than - using them. Starting with a 6800 based CPU board which could be operated on a stand-alone
 basis using switches and LEDs for I/O, a powerful microcomputer system can be built up by adding various ROM, RAM, VDU and serial or parallel I/O boards. Built on $8^{\prime \prime}$ square boards linked by a straightforward bus, the $77-68$ system also allows the experimenter to incorporate his own ideas without difficulty, especially as NewBear will sell just the design notes, and bare printed circuit boards, as well as complete kits.

However, in the years since the $77-68$ was designed, Motorola have introduced microprocessor chips that are more powerful and easier to use than the 6800. In particular, their 6809 offers a cleaner and more powerful instruction set with greatly increased throughput in most applications. To allow existing $77-68$ system users to upgrade their systems, and to give new constructors a more powerful base to build on, NewBear have now released a 6809 based CPU board - the 79-09 - as an alternative to the original 6800 based card

Design Objectives

As shown in the block diagram, the 79-09 board carries the 6909 processor itself plus 1 K bytes of RAM, a 1 or 3 K byte ROM monitor, separate eight bit parallel input and output ports, and a serial asynchronous I/O port for connection to a Teletype or similar terminal. It can be used as a single board computer controlled from the terminal, or a complete system may be built by using it with other boards from the $77-68$ range. By using a different monitor ROM it would also be possible to manage without a terminal and instead control the board via a Hex keyboard and display connected to the parallel I/O ports. Sensibly, the ROM, RAM and I/O addresses have been made compatible with those used by South West Technical Products' 64K 6809 system, allowing the use of widely available software.

Circuit

A crystal controlled oscillator is used to provide the 6809 clock, and may be set for either a 1 or 2 uS MPU

Fig.1. The block diagram of the 79-09 CPU board. It is fully compatible with all the existing range of hardware produced by Newbear for the 77-68 computer.
cycle time; the latter for use with cheap, slow, external memory, although this can also be catered for on a 1 uS system by using the board HOLD line to extend the MPU cycle time while slow memory is being accessed. This clock is then divided further to give a baud rate clock signal BD which can be set to any of the standard rates from 110 to 19200 baud. BD will normally be fed back into the board TX and RX CLK inputs and hence to the ACIA (Asynchronous Communications Interface Adaptor UART) and will therefore be selected to match the terminal's data rate. Serial input and output buffers connected to the ACIA give a choice of RS232 or TTL levels.

An eight bit latch X 16 is used for the paralled output port, while an eight bit tri-state buffer X17

THE 79-09 COMPUTER

Fig.2. The circuit diagram for the new CPU card. Not that the choice of interrupt lines is via a patch as only two can be supported by the existing bus structure.
transfers information from the parallel input port onto the MPU data bus. Two 21141 K by 4 bit static memories are used for the on-board RAM, and a 2708 or 2716 type ROM or EPROM holds the monitor program. The eight MPU data lines are buffered by a tri-state bidirectional buffer X12 for connection to the system bus, and the 16 address lines are fed through the permanently enabled buffers X7 \& 11.

Address decoding for the on-board RAM, ROM and $1 / O$ ports is done by the one-out-of-eight decoder X6 and the surrounding gates such that the paralled ports are at Hex E000, the ACIA at E004/5, RAM at DC00-DFFF, and ROM occupies the top 1 or 2 K of memory space. The address decoding circuits also ensure that the data bus buffer X12 is turned off when onboard memory or $1 / O$ ports are being accessed.

Although the $77-68$ bus, being based on the 6800 processor, has only two interrupt lines (IRQ and NMI), the 6809 processor has a third; FIRQ (Fast Interrupt Request). Board strapping options have therefore been provided to allow the user to choose which two he extends onto the system bus.

Externally regulated +5 V and $\pm 12 \mathrm{~V}$ supplies are required, the latter for the RS232 output buffer and
for certain types of EPROM. Some EPROMs also need -5 V , and this is provided by an on-board regulator.

Construction

The 79-09 uses $231 \mathrm{C}^{\prime}$'s including the -5 V regulator and a DIP containing 134 k 7 resistors, and these, together with the miscellaneous components, are mounted on an $8^{\prime \prime}$ square single sided epoxy glass PCB with gold plated edge connector pads. Using a single sided PCB has undoubtedly reduced the cost to the constructor, but means a couple of additional hours work fitting straps to the component side of the board. In all, the 79-09 can be constructed in about two evenings of careful but relaxed working. In common with other computer boards, tracks are closely spaced and construction should only be attempted by someone who is proficient in the art of soldering on crowded PCBs.

In Conclusion

The author is now spending many enjoyable hours exploring the advantages of the 6809 instruction set, and would like to thank NewBear for permission to include the 79-09 circuit and other data from their Design Note in this article. fuily expandable to 32 k dual floppy

PERFORMANCE IMPACT PRINTER Standard system with printer.

NEW BUILT
48×32 VIDEO VERSION VERSION
$£ 199+$ VAT
50 Hz version

- NO FLICKER

Superboard $50 \mathrm{~Hz} £ 159.95$ + VAT 610 Expansion Board 8k RAM 610 Expansion Board 8k RAM
ONLY $£ 159.95+$ VAT
 IP CD3P Minifloppy Disc, Cased, PSU, 2 copies DOS ONLY $£ 275$ + VAT 4k RAM ONLY $£ 24+$ VAT Plastic Case, Beige ONLY $£ 26$ + VAT Challenger IP-Metal Cased, Superboard, PSU modulator ONLY $£ 219+$ VAT

Probably the most highly featured printer for the lowest cost! The ideal companion for PET, APPLE, TSR80, Exidy, Superboard, Compukit, Ohio Challengers and most micro's Rugged metal enclosure makes if ideal for home computing, small business systems, data logging etc.

- RS-2.32. 20mA. IEEE 488 and Centronics $1 / 0$ - 16 Baud Rates to 19.200
-60 Lines per minute - Bidirectional
-5 print densities $72,80,96,120$ or 132 Chr/Line - Self Test Switch $2 k$ Buffer
- Tractor and Fast Paper Feed/Graphics

Modei 800 MST ONLY $£ 399$ • VAT

Low price PETS

- large keyboard
$16 k-£ 549$ + VAT
32k-£649 + VAT

ZT DRIVING COMPUTER

*MPG Instant *MPG Average *Gals. used since fillup *Miles to empty *Elapsed time "Time to empty ONLY $£ 77.50$ + VAT

(u)

INTELLIGENT EPROM PROGRAMMER Connects directly to TV. Develop, Copy, Burn,

VIDEO GENIE based on TRS80

Utilises Z80, 12k level II Basic, 16k RAM, Integral Cassette Deck, UHF O/P, all TRS8O fearures ONLY $£ 369+$ VAT

ONLY $£ 120$ + VAT Built \& Tested
$£ 100+$ VAT Kit. $£ 20+$ VAT BuiltPowerSupply
!!!! SPECIAL SCOOP !!!!
Verbatim Discs in fives
$5 \frac{1}{4 \prime} \cdot £ 1.85$ (each) + VAT
$8^{\prime \prime}$ - f). 20 (each) + VAT

STRINGY FLOPPY

Combines economy of cassette with speed \& reliability of disc. (TRS80 exp.int.not req.) ONLY $£ 189$ + VAT (inc. 20 wafers (Tapes)

mightymicre

Please add VAT at 15%. Carriage extra, will advise at time of order. Official orders welcome. Product details on request. Trade and export enquiries welcome.
33 CARDIFF ROAD, WATFORD, HERTS. Telephone: (0923) 38923
PO Box 17,61 NEW MARKET SQ,BASINGSTOKE,HANTS.(0256) 56417

Mail Order and Enquiries to Basingstoke

STOP PRESS: Superboard Compatible UK 101 TRS80

COLOUR YOUR NASCOM!

DAZZLING COLOUR GRAPHICS FOR NASCOM $1 \& 2$

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other microprocessor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.

NOW AVAILABLE FOR $f 45$ PUS LIMITED PERIOD AT 2,4 VAT

 Dower House, BillericayHerongate, Brentwood, Herongate, Brent
Essex CM13 3SD.
Telephone: Brentwood (0277) 810244

ROUTE SEARCH

Route Search is a game for one player which combines luck and skill. A map, representing a railway network, is generated by the computer. At each corner or junction of the track a town (designated by either a letter or a number). Printed at the top of the screen are eleven numbers representing the number of passengers to be picked up at each town except the destination which, of course, has no passengers to be picked up.

Game Objective

The object of the game is to get as many passengers as possible to their destination (Town C) in as short a time as possible. To do this you are given three trains all of which start out at Town 2. When you wish to start a train you type the letter "A" into the computer, and then, when it asks for it, you type in the route which you wish the train to take. This is done by typing in the names of all the towns through which the train must pass before reaching Town C. (Note that Town C must end the list.)

At the end of each game the computer gives the player's score and the highest score previously scored.

Program Listing

```
OOO PRINT "ROUTE SEARCH"
005 DIM S$(3),N(11), Z(3,2),P(3,2), A(12,12)
0 1 0 \text { DIM D(3),W(3),T(3)}
015G=0
020 MAT A = ZER
0 2 5 ~ F O R ~ B ~ = ~ 1 ~ T O ~ 1 1 ~
030 A(B,B + 1)=3
035 A(B,B + 3) =2
040 A(B + 1,B)=1
045 A(B + 3,B)=4
0 5 0 ~ N E X T ~ B ~
055 A(8, 12)=2
060 A(9, 11)=2
0 6 5 \mathrm { A } ( 1 1 , 1 2 ) = 1
0 7 0 A ( 1 1 , 9 ) = 4
0 7 5 \mathrm { A } ( 1 0 , 1 2 ) = 3
0 8 0 \text { FOR B = 1 TO 15 STEP 2}
085 POKE(33292 + B). }10
090 POKE(33692 + B), }10
0 9 5 ~ N E X T ~ B ~
100 FOR B =1 TO 11 STEP 2
105 FOR C = 1 TO 16 STEP 5
110 POKE(33252 + C + B*40), 102
115 NEXT C
1 2 0 ~ N E X T ~ B ~
125 FOR B = 1 TO 5 STEP 2
130 POKE(33492 + B), }10
135 POKE(33502 + B), }10
140 NEXT B
145 POKE 33292,49
150 POKE 33492,50
155 POKE 33692, 51
160 POKE 33258, 52
165 POKE 33499,53
170 POKE 33738,54
175 POKE 33263,55
180 POKE 33502, 56
```



```
295 PRINT "(CD)"
300 PRINT "(CD)"
3 0 5 ~ F O R ~ Y ~ = ~ 1 ~ T O ~ 9 ~
310 PRINT Y" - "N(Y)
315 NEXT Y
320 PRINT "A - "N(10)
325 PRINT "B - "N(11)
330 GET C$
335 IF C$= "A" GOSUB 565
340 IF E =0 THEN 330
345 FOR B=1 TO 3
350 IF D(B)=5 THEN 410
355 IF W(B)=5 THEN 420
360 W(B)=W(B)+1
365 Z(B,1)=P(B,1),Z(B,2)=P(B,2)
370 ON D(B) GOTO 375,385, 395,405,410
375 P(B,2)=P(B,2)-1
3 8 0 \text { GOTO 410}
385P(B,1)=P(B,1)+1
3 9 0 \text { GOTO 410}
395 P(B,2)=P(B,2)+1
400 GOTO 410
405 P(B,1)=P(B,2)-1
4 1 0 ~ N E X T ~ B ~
4 1 5 \text { GOTO 250}
420 V$ = MID$(S$(B),T(B),1)
4 3 0 \text { GOSUB 545}
435 V = VAL(V$)
4 4 0 ~ I F ~ V = 1 2 ~ T H E N ~ 4 8 0 ~
445 T(B)=T(B)+1
450 V$=MID$(S$(B),T(B),1)
```

455 GOSUB 545
$460 \mathrm{R}=\mathrm{VAL}(\mathrm{V} \$)$
$465 \mathrm{D}(\mathrm{B})=\mathrm{A}(\mathrm{V}, \mathrm{R})$
$470 W=0, M=M+N(V), N(V)=0$
475 GOTO 360
$480 D(B)=5, C=C+1$
485 IF C $=3$ THEN 495
490 GOTO 410
$495 \mathrm{~F}=\mathrm{M} / \mathrm{L}$
500 PRINT"YOU HAVE TAKEN "M" PASSENGERS TO THEIR"
505 PRINT "DESTINATION IN TIME "L
510 PRINT" "THEREFORE YOU HAVE SCORED "F
515 IF F $>$ G THEN G $=\mathrm{F}$
520 PRINT "THE HIGHEST SCORE SO FAR IS "'G
525 INPUT "DO YOU WANT ANOTHER GAME?"D\$
530 IF D $\$=$ "YES" THEN 205
540 STOP
545 IF $V \$=$ " $\mathrm{A} "$, THEN V $\$=$ " 10 "
550 IF $V \$=$ " B ", THEN $V \$=" 11$ "
555 IF $\mathrm{V} \$={ }^{\prime \prime} \mathrm{C} "$, THEN $\mathrm{V} \$=" 12$ "
560 RETURN
$565 \mathrm{E}=1, \mathrm{H}=\mathrm{H}+1$
570 IF H>3 PRINT "SORRY, ALL ROUTES HAVE ALREADY BEEN';
572 PRINT "SPECIFIED"; RETURN
575 INPUT "ROUTE?" $\$ \(H)
$580 \mathrm{~V} \$=\mathrm{MID} \$(\mathrm{~S} \$(\mathrm{H}), 2,1)$
$585 \mathrm{~V}=\mathrm{VAL}(\mathrm{V} \$)$
$590 \mathrm{D}(\mathrm{H})=\mathrm{A}(1, \mathrm{~V})$
595 RETURN

PHOTOGRAPHER'S AID

S. Richards

The following program was written for the photographic enthusiasts among us. It is an aid for the calculation of flash-to-subject distances that is needed when using an electronic flashgun. A typical example of the need for this kind of table is when doing close-up work using extension tubes or when the flash has been moved to one side to avoid "red-eye" when taking portraits.

Program Notes

The program was originally written for the Commodore PET but it should be easity adaptable to any system that uses BASIC. To avoid confusion the standard CT codes have been used for cursor and graphics characters, CD for Cursor Down etc. Enhancements can be made in the form of a continuous table printout but that is up to the individual user.

Program Listing

100 PRINT"[CLS]FLASH TO SUBJECT
COMPUTER"
110 PRINT" IN PET BASIC"
$120 \operatorname{DEF}$ FNA $(X)=\operatorname{INT}(X * 100+0.5) / 100$
130 PRINT" [2CD]ARE YOU USING EXTENSION TUBES, Y OR N ?"

140 GET A $\$$: IF $A \$="$ " THEN 140
150 IF A $\$=$ " Y " THEN 180
160 IF A\$ $=$ " N " THEN 330
170 GOTO 140
180 PRINT" [2CD]ENTER FOCAL LENGTH OF LENS[CD]"
190 INPUT L
200 PRINT" [CD]ENTER EXTENSION[CD]"
210 INPUT E
220 PRINT" [CD]ENTER GUIDE NUMBER[CD]"
230 INPUT G
240 PRINT" [CD]ENTER INDICATED F STOP[CD]"
250 INPUT F
260 PRINT" [CD]FLASH TO SUBJECT DISTANCE ";
270 PRINT FNA(G*1/(($\left.\left.\mathrm{L}+\mathrm{E}))^{*} \mathrm{~F}\right)\right)$ "FEET"
290 PRINT" [2CD]PRESS ANY KEY TO RESTART"
300 GET A\$:IF A\$=" " THEN 300
310 GOTO 100
330 PRINT" [2CD]ENTER GUIDE NUMBER[CD]"
340 INPUT G
350 PRINT" [CD]ENTER F STOP[CD]"
360 INPUT F
370 PRINT" [CD]FLASH TO SUBJECT DISTANCE";
380 PRINT FNA(G/F)" FEET"
390 GOTO 290
400 END

Buy a microcomputer for under $£ 1,000$ and you could be on your own! Unless it's a Commodore PEI

Commodore produce Britain's number one microcomputer. But we don't stop there. We also insist on providing comprehensive support throughout our national dealer network.

Our dealers can examine your needs and demonstrate which hardware and software will suit you best. Their trained engineers are always at hand and a 24 -hour field maintenance service is available. Your local dealer can tell you more about the following Commodore Services.

c
Y The Commodore PET
The Commodore PET computer range covers everything from the self-contained unit at under $£, 500$ to complete business systems at under £ 2,500 .

cCommodore Business Software and Petpacks Our software range covers hundreds of applications. Business software includes Sales and Purchase Ledgers, Accounting, Stock Control, Payroll, Word Processing and more. In addition over 50 Petpacks are available covering such titles as Strathclyde Basic Tutorial, Assembler Development System, Statistics, plus our Treasure Trove and Arcade series of games.

C
 Commodore Approved Products

Compatible products of other manufacturers with Commodore's mark of approval are also available.

G:Commodore Courses Commodore offer a range of residential training courses and one day seminars. An excellent start. And when you have installed your system the PET User's Club Newsletter can keep you informed of new ideas and latest developments.

LONDON AREA
Adda Computers Ltd,
W5.01-5795845 Advanced Management Systems Byteshop Computerla W1 $01-6360647$
WSS C.S.S. (Business Equipment) Ltd E8. 01-2549293 Capital Computer Systems.
W1 $01-6375551$ Centralex-London Ltd,
SE13.01-3184213 Cream Microcomputer Shop Da Vinci Computer Shop. EDGWARE. O1-952 0526 L\& J Computers.
NW9.01-204 7525 Home and Business Computers. E12.01.4725107
Merchant Systems Limited. Merchant Systems Lim
EC4.01-3531464
Metyclean Lid Metyclean Ltd,
SW1. $01-8282511$ SW1. $01-8282511$
Micro Computation N14. $01-8825104$ Micro Computer Centre
SW14. $01-8783206$ SW14.01-878 3206
Sumlock Bondain Led Sumlock Bondain Ltd
EC1.01-250 0505 Surniock Bondain Ltd. EC4. W1-6260487 T.L.C. World Trading Ltd
WC2. $01-8393894$ TOPS TVLTO SW1.01-7301795

HOME COUNTIES
G. M. Marketing. ASV Microcomputers BASINGSTOKE. 62444 MMS Ltd.
BEDFORD, 4060
Elex Systems Ltd
Elex Systems Ltd ODM Direct Data Marketing Ltd
BRENTWOOD BRENTWOOD, 229379 Amplicon Micro Systems Lto
BRIGHTON. 562163 RUF Computers (UK) Lt BURGESS HILL 45211 T\&V Johnson (Microcomputers Cambridge Computer Store. CAMBRIDGE. 65334 Wego Computers Ltd CATERHAM COLCHESTER. 7881 South East Computers Ltd HASTINGS, 426844 Alpha Business System
HERTFORO, 57423 HERTFORO, 57423 KINGS LANGLEY. 65056 Isher-Woods Business Systems.
LUTON. 416202 LUTON. 416202
South East Computers Ltd
MAIDSTONE. 681263 Micro Facilities Ltd. MIDDLESEX, O1-9794546 J. R. Ward Computers Ltd.
MILTON KEYNES 562850 Sumlock Bondain (East Anglia) Lt
NORWICH. 26259 NORWICH. 26259
I \& V Johnson (Microcomputers EEC) Ltd. OXFORD. 721461
HS.V MiCrocomputers H.S.V Microcomputers.
SOUTHAMPTON. 22131 SUper-Vision.
SOIJTHAMPTON. 774023 xitan Systems Ltd. SOUTHAMPTON. 38740 SOUTHEND-ON-SEA. 62707 The Computer Room. TUNBRIDGE WELLS. 41645 Orchard Electronics.
WALLINGFORD 35529

Petalect Ltd WOKING. 63901
Oxford Computer Systems.
WOODSTOCK 811976
MIDLANDS AND
SOUTH HUMBERSIDE
Byteshop Computeriand,
8IRMINGHAM. 6227149 CPS (Data Systems) Ltd. BIRMINGHAM. 7073866 Camden Electronics.
BIRMINGHAM 7738240 Computer Services Midiands Ltd BIRMINGHAM. 3824171 Catlands Computers) Ltd.
BURTON-ON-TRENT. 812380 BURTON-ON
bek Systems.
COVENTRY. 86449
Jondane Associates Ltd,
COVENTRY, 664400
Davidson-Richards Ltd.
DERBY 366803
DERBY, 366803
HINCKLEY 6135 Systems Ltd
B. Computers.

KETTERING. 83922
Taylor-Wilson Systems Ltd
Machsize Ltd.
LEAMINGTON SPA. 312542
Office Computer Techniques Ltd
LEICESTER. 28631
LEICESTER. 28631
Mawe Electronics.
MATLOCK. 2817
Betos Systems) Ltd.
NOTTINGHAM. 48108
NOTTINGHAM. 48108
Byteshop Computerland
NOTTINGHAM. 40576
Keen Computers Ltdd.
NOTTINGHAM. 583254
Tekdata Computing.
STOKE-ON-TRENT. 81363
Systems Micros.
McDowell Knagg \& Associates
WORCESTER. 427077

YORKSHIRE AND

NORTH HUMBERSIDE
Ackroyd Typewriter \& Adding
Machine Co. Ltd. BRADFORD. 31835 Allen Computers.
Microware Computers Lid.
HIJLL. 562107
Mictoprocessnr Services
HULL. 23146
Holdene Ltd
Holdene Ltd
LEEDS. 459459
LEEDS. 459459

SoubMintand Commuications tret. NORTH WEST AND
 Compurer cente Shefilid) the Sitffili 5.535
 Hallam Computer Systems Ltd. SHFFFIELD. 663125
NORTH EAST
Oyson hat unent curn Wards (Oftice Supplies) Group.
 Efton tid Fiddes Marketing Limit: NEWCASTLE. 8151; Newcastle Computer Services NEWCASTLE 615325 Format Micro Centre.
NEWCASTLE, 21093 Tripont Associated Systems Consultants Ltd.
SUNDERLAND, 73310
SOUTH WALES AND WEST COUNTRY Radan Computationalled. BATH. 318483
Computer Corner
BAYSTON HILL 4250 Bristol Computer Centre. BRISTOL 23430 C.S.S. (Bristol) Ltd.
RRISTOL 779452 RRISTOL. 779452
T\& V Johnson (Microcomputers Etc) Ltd. BRISTOL. 422061 Sumlock Tabdown Ltd. BRISTOL 26685 Sigma Systems.
CARDIFF 34869 CARDIFF. 34869

Office and Busines | (Chester) Ltd.DEESIDE. 817277 |
| :--- | A.C. Systems.

EXETER. 71718 Micro Media Systems.
NEWPORT. 59276 J.M. Computer Services Ltd NEWQUAY. 2863 Devon Computers. J.A.D. Integrated Services J.D. Inte grated Servic
PLYMOU TH 62616 Business Electronics
SOUTHAMPTON. 738248 Computer Supplies (S
SWANSEA. 290047 SWANSEA. 29004

Tharstern Lidd.
BURNLEY 384
$\mathrm{B}+\mathrm{B}$ (Computers) Ltd,
BOLTON 26644 .
Preston Computer Centre.
PRESTON. 57684 PRESTON. 57684
Catlands (Computers) Ledd,
WILMSLOW. 527166 . LIVERPOOL
Aughton Microsystems Ltd.
LIVERPOOL. 5487788
BEC COMPuters 188 B.E. C Computers.
LIVERPOOL 263538 Rockcliff Brothers Ltd.
LIVERPOOL, 5215830 MANCHESTER AREA
Byteshop Computerland,
MANCHESTER. 2364737
Computastore Ltd.
MANCHESTER. 8324761
Cytek (U.K.) Ltd. 872482
Executive Reprographic Ltd.
MANCHESTER. 2281637
N.S.C. Computer Shops Ltd.
MANCHESTER. 832 2 269

Sumlock Electronic Curvicos
Manchester) I id,
MANCHFSTKR : $34.4 \geqslant 33$
Professiona: Compiter Sarvices Lid
OLDHAM. 624406 .
D. Kipping Ltd,

SALFORD 8346367
Automated Business Equipment Ltd
STOCKPORT, 061-4320708
SCOTLAND
Holdene Microsystems Lttd.
EDINBURGH, 6682727

EDINBURGH, 6682727
Microcentre.
EDINBURGH

Aethotrol Consultancy Services.
GLASGOW. 6417758
Byteshop Computerland.
Byteshop Computerland,
GLASGOW. 2217409
Robox Ltd.
GLASGOW. 2215401
Mac Micro. 221203
INVERNESS. 712203
Thistle Computers.
Thistle Computers.
KIRKWALL. 3140
IRELAND
Softech Ltd.
DUBLIN. 784739
Mercill
Medical \& Scientific Computer.

- To Commo -

360 Euston Road. London W1 3BL. 01-3885702
Please send me further information about the Commodore PET. |
Name
Position
Address

YES \square
NO \square

Cocommodore

If your fingers feel the strain from not having a shift lock' on your keyboard this circuit will be more than welcome.

0n most computer keyboards the CONTROL and SHIFT keys have to be held depressed while one of the alpha-numeric keys is pressed at the same time. If a string of data has to be keyed in with either the CONTROL or SHIFT key operated it would be useful to be able to enter the data without having to use both hands. This circuit allows the CONTROL or SHIFT keys to be maintained in the operated condition electronicallv, while keying in data using the alphanumeric keys but without disturbing the normal operation of the keyboard. A visual indication is also given when the facility is in use.

Normally, to enter a special code the CONTROL or SHIFT key is held operated while the appropriate alpha-numeric key is pressed, this method of keying a single CONTROL or SHIFT character remains unchanged. If, however, a string of shift characters is required the SHIFT key is pressed once by itself, a lamp on the keyboard lights and the shift facility remains in operation while the required alpha-numeric keys are pressed. To cancel the shift function the SHIFT key is pressed once again, the indicator lamp is extinguished and the keyboard reverts to the normal mode. the control function is identical except that a second lamp indicates that it is the control facility that is in use.

Keyboard Modification

To connect this circuit to the existing keyboard the connections to the CONTROL and SHIFT keys on the circuit board must be broken and the key contacts rewired to the two inputs of the circuit as shown in Fig.1. The two outputs of the circuit should then be connected to the existing keyboard circuitry in place of the two keys that have been disconnected. A 5 V supply is required for the circuit but since the integrated circuits are CMOS types the only additional current drain is from the two light emitting diodes. the only remaining connection is a pulse signal which must go to +5 V when any alpha-numeric key is pressed, normally the keyboard 'strobe' output is suitable. Two LEDs should be mounted on the front panel and labelled CONTROL and SHIFT.

Circuit Operation

The operation of the SHIFT key circuitry is described, operation of the CONTROL key circuitry is identical. The circuit consists of a bistable which can be set and reset by successive operations of the SHIFT key; the output of the bistable controls a CMOS transmission gate which performs the function of the original SHIFT key. Once the bistable has been set it can only be reset by a further operation of the SHIFT key (or the CONTROL key) and the operation of any alpha-numeric key has no effect on it. The SHIFT LED lights while the bistable is set.

Assume that the SHIFT key is pressed and released once. When the key operates the output of the Schmitt trigger gate IC3a will go high after a delay of approximately 10 mS to eliminate contact bounce. The positive-going edge at the CLK input will switch bistable IC2a to the set position and enable transmis-

KEYBOARD MINIMOD

sion gate IC1a to simulate the SHIFT function in the keyboard circuitry. The high level at the Q output of the bistable will also enable transmission gate IC1b and light the SHIFT LED via transistor Q1. The high level at the output of gate IC3a will also reset the CONTROL bistable via diode D1 if it is switched, thus preventing both bistables being set at the same time.

When the SHIFT key is released the output of gate IC3a will go low and switch off transmission gate IC1a but the bistable will remain switched to maintain the shift function via transmission gate IC1b. If the key is pressed for the second time, the positive going edge at the CLK input will restore the bistable to the reset condition because the Q output is connected back to the D input to perform a divide-by-two function. The bistable, in restoring, will extinguish the LED and remove the shift function to the keyboard by switching off the transmission gate IC1b.

If the keyboard is used in the normal way, an alpha-numeric key will be pressed while the SHIFT key is held operated. When the SHIFT key is pressed the bistable and LED will switch as before. With the SHIFT key operated the high level at the output of gate IC3a also enables an input of gate IC3b the other input of which is normally held low by the absence of any strobe pulse. If an alpha-numeric key is now also pressed this input will go high (when the strobe becomes active) so that the output of the gate IC3b will go high and this positive-going edge is transferred via capacitor C1 to the RS input of the bistable which resets to its normal state. When the SHIFT key is released, gate IC3a
switches off transmission gate IC1a and the circuit is then back in its normal state.

If the CONTROL key is operated while the shift bistable is switched the high level from the output of gate IC3d will reset the bistable via diode D2.

The transmission gates used are type 4066 which have a lower 'on' resistance than the 4016 types, although either type would probably be suitable for keyboards which have high impedance inputs. If negative voltage levels are to be switched the data sheets should be consulted to ensure that the safety parameters are not exceeded.

PARTS LIST

Resistors, all $1 / 4 \mathrm{~W}, 5 \%$	
R1,2	2k0
R3,4,5,6,7	10k
R8,9	$1 \mathrm{M0}$
R10,11	To suit LEDs used
Capacitors	
C1, 2, 3, 4	10n
Semiconductors	
IC1	4066 (4016)
IC2	4013
IC3	4093
Q1,2	BC107
D1,2	Any small silicon diode
LED 1,2	Any general purpose LED

AS RECOMMENDED BY COMPUTING TODAY - THE CENTRONICS 'MICRO-PRINTER'
Ask most people what they would like as their first peripheral and the chances are they will say "Printer". Here is an attractive electrostatic printer from the famous firm of Centronics. Capable of printing in three sizes of typeface it is easily attached to your machine by way of the parallel interface. The logic is fully TTL compatible and STROBE, Acknowledge and Busy lines are provided to make life easy.
"Cost of this wonderful peripheral is a mere $£ 195.00$ + VAT The printer comes complete with documentation, connector and cleaning paper as well as a roll of the printing paper." (extract from COMPUTING TODAY).

Ex-STOCK from HENRY'S

 Ideal for PETS-TANDY-NASCOM'sSpecification

- 150 lines per minute
- Selectable 204080 columns
- $120 \mathrm{~m} / \mathrm{m}$ aluminium - Finish paper unaffected
by Heat, Light or Humidity.
- Full character ASC II set.
- Paper Feed, 220-240AC mains
- On-Off Print Select.
- Paper Advance - Empty Controls.
- Size $10 \frac{1}{2} \times 13 \frac{1}{2} \times 4 \frac{1}{2}$ " Weight 10 l bs

Ideal for Home or Small Business use.
LIMITED QUANTITY DON'T DELAY

Brand new boxed fully guaranteed list price of this machine. $£ 459.95$ inc. VAT.

OUR PRICE
£195 ${ }_{\text {pusus Vat }}^{\text {oin }}$
POST PAID

Your London \& National Nascom Distributor. Export Orders deduct VAT, but add 5\% carriage Official Export \& Educational Orders welcome Our Telex 262284 Mono Ref. 1400 Transonics

Complete with Full documentation connector \& Printing Paper -

HALF PRICE OFFER
Just Plug in and it's ready to go!
AS RECOMMENDED BY "COMPUTING TODAY" MARCH/MAY 1980

CENTRONICS
quick PRINTER

TOWERS OF BRAHAMA

The following game is a simulation of the (supposed) project given by the supreme Hindu deity, Brahama, to his disciples. The object of the game is explained in the initial text and is not as simple as you might think from first inspection. The version of BASIC is mainframe based, it should be quite possible to convert it into lowlier dialects. The only possible points of contention are the real-time clock set at 620 and read at 1800 . You will need to have good string handling capability but Integer arithmetic will suffice. As encouragement it has been converted onto a PET with no trouble at all.

Program Listing

100 PRINT "THE TOWER OF BRAHMA"
120 PRINT
140 PRINT "LOOKS LIKE THIS (WITH 5 RINGS):-"
160 PRINT

180 PRINT "	A	B
200 PRINT "	1 A 1	B
220 PRINT "	22 A 22	B
240 PRINT "	333 A 333	B
260 PRINT "	4444A4444	B
280 PRINT	55555A55555	B

280 PRINT " 55555 A55555
C"
300 PRINT RPT $(40,42)$
320 PRINT NLN(1)
400 PRINT "THE OBJECT OF THE GAME IS TO TRANSFER THE RINGS FROM"
420 PRINT "PILLAR ' A ' TO PILLAR 'C', ONE AT A TIME, BUT AT NO"
440 PRINT "TIME CAN A LARGER RING BE ON TOP OF A SMALLER RING."
460 PRINT
480 PRINT " YOU MAY REQUEST A PICTURE AT A.NY TIME BY TYPING"

500 PRINT "'PICTURE' AS THE NEXT 'FROM' COMMAND."
505 PRINT
510 PRINT "TO TERMINATE TYPE 'S'."
520 PRINT
540 PRINT "HOW MANY RINGS WOULD YOU LIKE (5-9)? ";
$550 \mathrm{Q}=-1$
560 INPUT Z
580 IF $Z<5$ THEN 540
600 IF $Z>9$ THEN 540
620 STIME $(0,0,0)$
640 DIM A $(3,9)$
660 FOR $X=1$ TO 3
680 FOR $Y=1$ TO Z
700 IF $X=1$ THEN $A(X, Y)=Y$
720 IF $X>1$ THEN $A(X, Y)=0$
740 NEXT Y
760 NEXT X

840 PRINT "TAKE A RING FROM ";
$850 \mathrm{Q}=\mathrm{Q}+1$
860 INPUT J\$
$900 \mathrm{~J} \$=\operatorname{SEG} \$(\mathrm{~J} \$, 1,1)$
910 IF J\$ = " P " THEN 1500
920 IF J\$ ="S" THEN 2200
940 IF J\$<" $\mathrm{A}^{\prime \prime}$ THEN 840
960 IF J\$ > " C " THEN 840
$980 \mathrm{~V}=\mathrm{ASC}(\mathrm{J})-64$
1000 FOR $Y=1$ TO Z
1020 IF $A(V, Y)>0$ THEN $T=A(V, Y) \backslash$
$A(V, Y)=0 \backslash$ GOTO 1100
1040 NEXT Y
1060 PRINT "NO RING ON THAT PILLAR"
1080 GOTO 840
1100 PRINT "TRANSFER TO
1120 INPUT K\$
$1160 \mathrm{~K} \$=\operatorname{SEG} \$(\mathrm{~K} \$, 1,1)$
1170 IF K $\$=$ " S" THEN 2200
1180 IF K \leqslant " $\mathrm{A}^{\prime \prime}$ THEN 1100
1200 IF K $\$>$ " C" THEN 1100
$1220 U=$ ASC $(\mathrm{K} \$)-64$
1240 FOR $W=Z$ TO 1 STEP -1
1260 IF $A(U, W)=0$ THEN IF $W=Z$ THEN $A(U, W)$
$=T \backslash$ GOTO 800
1280 IF $\mathrm{A}(\mathrm{U}, \mathrm{W})=0$ THEN IF $\mathrm{W}<\mathrm{Z}$ THEN IF $\mathrm{A}(\mathrm{U}, \mathrm{W}+1)<\mathrm{T}$ THEN 1340
$1300 \mathrm{IF} \mathrm{A}(\mathrm{U}, \mathrm{W})=0 \operatorname{THEN} \mathrm{~A}(\mathrm{U}, \mathrm{W})=\mathrm{T} \backslash$ GOTO 1700
1320 NEXT W
1340 PRINT "RING ON THAT PILLAR IS SMALLER"
$1360 \mathrm{~A}(\mathrm{~V}, \mathrm{Y})=\mathrm{T}$
1380 GOTO 800
1500 FOR $Y=1$ TO Z
1520 FOR $X=1$ TO 3
1540 PRINT TAB $\left(5^{*} X\right)$; $A(X, Y)$;
1560 NEXT X
1580 PRINT
1600 NEXT Y
1620 PRINT TAB(5);RPT(15,42)
1640 PRINT
1660 GOTO 800
1700 FOR $Y=1 \mathrm{TOZ}$
1720 IF $\mathrm{A}(3, Y)<>Y$ THEN 800
1740 NEXT Y
1760 PRINT "CONGRATS, YOU'VE DONE IT, \& IT ONLY"
1780 PRINT "TOOK YOU";
1800 RTIME(H,M,S)
$1820 \mathrm{M}=\mathrm{M}+\mathrm{H}^{*} 60$
1840 PRINT M;" MINS. \& ";Q;" MOVES. "
1860 PRINT
1900 PRINT "TRY AGAIN? ";
1920 INPUT A\$
1940 IF SEG\$(A\$,1,1)="Y" THEN 520
1960 IF SEG $\$(A \$, 1,1)<>" N "$ THEN 1900
1980 PRINT "OK, BYE"
2000 STOP
2200 PRINT "PITY, SO FAR IT ";
2220 GOTO 1780

SOFTSPOT

THE TOWFK OF BFAHMA
1．OOK゙S LTK゙E THTS（WTTH ERTNGS）＊．．．

A	E	0
1 A1．	E	C
22A20	B	C
333A333	E	C
4444A4444	B	C
	E	C

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ THE OB，JFCT OF THE＠लME IS TO TR゙ANSFEF THE RTNGS FFOMFILLAR＇A＇ TO FIILI．．．AR＇＇C＇，ORE AT A TTME：BUT AT NO TJME CAN A L．．ARGER RTNG BE：ON TOF OF A SMAlıEFRTNO

YOU MAY RERUEST A FTCTUFE AT ANY TIME BY TYFTNG FTETUFE：AS THE： NFXT＇FROM GOMMANI．
10 TEFMINATE TYFE ${ }^{\circ} S^{\circ}$

HOW MANY FENGS WOHI Y YOU
1．．T\＆゙E（5－．9）？

TAKE A FTMG CFANSHEFTO	FEOM
TAKE A KTNG	FFOM
TRANSFEFK TO	C
	FFOM
TRANSWEK TO	1.
TAkE A 天TNO	FFOM
0	00
0	00
3	0 O
4	0 0
\％	$0 \quad 1$
6	02

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

TAKE A KTNG FFOM A
TRANSFFた TO B
YAKE A FENO FROM B
TRANSFFFTO A
TAKE A FRNGFFOM C
TEANSFFF゙TO A
EING ON THAT FTLIAE IS SMALIEEE
TAKE A ETNG FFROM FTO

0	0	0
0	0	0
1	0	0
4	0	0
6	0	0
6	3	2

TAKE A FTNGFFOM C
 YFANSFER TO E
TAkE A RJNO FFOM C NO FING ON THAT FTIIAEE

0	0	0
0	0	0
0	0	0
4	1	0
5	2	0
6	3	0

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
TAKE A FTNG FFOM A

TRANQFFRTO＊C
TAK… A RTNG FFOM B
TRANCFEF TO A
TAKE A FTNG FFOM C

0	0	0
0	0	0
1	0	0
2	0	0
5	0	0
6	3	4

TAME A RTNG	FKOM	E
TEANSFEF TO	C	
TAKE A ETNG	F60M	A
TRANSFER TO	－	
IAKE A FING	FROM	A
TFADNEFEF TO	C	
TAK゙E A F゙TNG	FFOM	FIC
0	00	
0	00	
0	$0 \quad 0$	
0	02	
\％	0 3	
A	1 4	
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊		
TAK゙E A FSNG	Fom	STOF－
FITYy 50 F⿵冂⿱一口㇒⿴囗⿱一一儿丶	－गT YOOK゙	You
2 MTNS． 2	21 MOリFs	
ThY AGALNT	NO	
O）K：EYE：		

A sample game of＇Towers＇played on a mainframe system．

TRS 80 Level 1

BUSINESS PACKAGE I Keep the books for a small business with your TRS 80 Level 14 K . The six programs included are:

General Information - The instructions for using the package.

Fixed Asset Control - This will give you a list of your fixed assets and term depreciation.

Detail Input - This program lets you create and record your general ledger on tape for fast access.

Month and Year to Date Merge - This program will take your monthly ledger data and give you a year to date ledger.

Profit and Loss - With this program you can quickly get trial balance and profit and loss statements.

Year End Balance - This program will combine all your data from the profit and loss statements into a year end balance sheet.
With this package, you can make your TRS-80 a working partner. Order No. 0013R

PERSONAL FINANCE I Let your TRS-80 handle all the tedious details the next time you figure your finances:

Personal Finance I - With this program you can
control your incoming and outgoing expenses.
Checkbook - Your TRS 80 can balance your checkbook and keep a detailed list of expenses for tax time.
This handy financial control package for the home requires only a TRS-80 Level 14 K . Order No. 0027R

Level 1\&2

SANTA PARAVIA AND FIUMACCIO Become the ruler of a medieval city-state as you struggle to create a kingdom. Up to six players can compete to see who will become the King or Queen first. This program requires a 16 K TRS- 80 Level $1 \& 2$ Order No. 0043 R

ELECTRONICS I This package will not only calculate the component values for you, but will also draw a schematic diagram, too. You'll need a TRS-80 Level 1 4 K or Level 216 K to use

Tuned Circuits and Coil Winding - Design tuned circuits without resorting to cumbersome tables and calculations.

555 Timer Circuits - Quickly design astable or monostable timing circuits using this popular IC.

LM 381 Preamp Design - Design IC preamps with this low-noise integrated circuit.
This package will reduce your designing time and let you build those circuits fast. Order No. 0008R

HAM PACKAGE I This versatile package lets you solve many of the commonly encountered problems in electronics design. With your Level 14 K or Level 2 16 K TRS -80 , you have a choice of:

Basic Electronics with Voltage Divider - Solve problems involving Ohm's Law, voltage dividers and RC time constants.

Dipole and Yagi Antennas - Design antennas easily, without tedious calculations.
This is the perfect package for any ham or technician. Order No. 0007R

Level 2

CARDS This one-player package will let you play cards with your TRS-80 - talk about a poker face! Level 2 16K. Order No. 0063R

HOUSEHOLD ACCOUNTANT Let your TRS 80 help you out with many of your daily household calcula tions. Save time and money with these fine programs:

Budget and Expense Analysis - You can change budgetting into a more pleasant job with this program.

Life Insurance Cost Comparison - Compare the cost of various life insurance policies. Find out the dif ference in price between term and whole life.

Datebook - Record all those important dates in your life for fast, easy access. The p:ogram has all major holidays already included.
All you need is TRS-80 Level 216 K . Order No. 0069R
FINANCIAL ASSISTANT Let the TRS-80 help you with
Investments, Loans, Personal Finances and Forecasting. Will run on a 4 or 16 K Level 2 machine.
Order No. 0072R

PET

CASINO 1 These two programs are so good, you can se them to check out and debug your own system!

Roulette - Pick your number and place your bet
with the computer version of this casino game. For e player.
Blackjack - Try out this version of the popular card game before you go out and risk your money on your own "surefire" system.
This package requires a PET with 8 K . Order No. 0014P
CASINO II This craps program is so good, it's the next best thing to being in Las Vegas or Atlantic City. It will not only play the game with you, but also will teach you how to play the odds and make the best bets. A one player game, it requires a PET 8K. Order No. 0015P

CHECKERS/BACCARAT Play two old favourites with your PET.

Checkers - Let your PET be your ever-ready opponent in this computer-based checkers program.

Baccarat - You have both Casino- and Blackjack-
style games in this realistic program.
Your PET with 8 K will offer challenging play anytime you want. Order No. 0022P

MIMIC Test your memory and reflexes with the five different versions of this game. You must match the sequence and location of signals displayed by your PET. This one-player program includes optional sound effects with the PET 8K. Order No. 0039P

TREK-X Command the Enterprise as you scour the quadrant for enemy warships. This package not only has superb graphics, but also includes programming for optional sound effects. A one-player game for the PET 8K. Order No. 0032P

TUKF AND TARGET Whether on the field or in the air, you'll h

Quarterback - You're the quarterback as you try to get the pigskin over the goal line. You can pass, punt, hand off, and see the results of your play using the PET's superb graphics.

Soccer II - Play the fast-action game of soccer with four playing options

Target - Use the numeric keypad to shoot your puck into the home position as fast as you can.
To run and score all you'll need is a PET with 8 K . Order No. 0097P

ARCADE I This package combines an exciting outdoors sport with one of America's most popular indoor sports:

Kite Fight - It's a national sport in India
Pinball - By far the finest use of the PET's exceptional graphics capabilities we've ever seen, and a heck of a lot of fun to play to boot
Requires an 8K PET. Order No. 0074P
ARCADE II One challenging memory game and two
fast-paced action games make this one package the
whole family will enjoy for some time to come.
Package includes.
UFO - Catch the elusive UFO before it hits the
Hit - Better than a skeet shoot. The target re
ains stationary, but you're moving all over the place.
Blockade - A two-player game that combines
strategy and fast reflexes.
Requires 8K PET. Order No. 0045P
DUNGEON OF DEATH Battle evil demons, cast magic spells, and accummulate great wealth as you search for the Holy Grail. You'll have to descend into the Dungeon of Death and grope through the suffocating darkness. If you survive, glory and treasure are yours. For the PET 8K. Order No. 0064P

Apple

MATH TUTOR I Parents, teachers, students, now you can turn your Apple computer into a mathematics tutor. Your children or students can begin to enjoy their math lessons with these programs

Hanging - Perfect your skill with decimal numbers while you try to cheat the hangman

Spellbinder - Cast spells against a competing magician as you practice working with fractions.

Whole Space - While you exercise your skill at using whole numbers your ship attacks the enemy planet and destroys alien spacecraft
All programs have varying levels of difficulty. All you need is Applesoft II with your Apple and 24K. Order No. 0073A

MATH TUTOR II Your Apple computer can go beyond game playing and become a mathematics tutor for your children. Using the technique of immediate positive reinforcement, you can make math fun with:

Car Jump - Reinforce the concept of calculating area while having fun making your car jump over the ramps.

Robot Duel - Practice figuring volumes of various containers while your robot fights against the computer's mechanical man.

Sub Attack - Take the mystery out of working with percentages as your submarine sneaks into the harbour and destroys the enemy fleet.
All you need is Applesoft II with your Apple and 20K. Order No. 0098A

GOLF Without leaving the comfort of your chair, you can enjoy a computerized 18 holes of golf with a complete choice of clubs and shooting angles. You need never cancel your game because of rain. One or two players can enjoy this game on the Apple with Applesoft II and 20K. Order No. 0018A

BOWLINGITRILOGY Enjoy two of America's favourite games transformed into programs for your Apple:

Bowling - Up to four players can bowl while the
Apple sets up the pins and keeps score. Requires Applesoft II.

Trilogy - This program can be anything from a simple game of tic-tac-toe to an exercise in deductive logic. For one player
This fun-filled package requires an Apple with 20 K Order No. 0040A

CT's Instant Software service is undergoing re-organisation to provide you with an even better range. So we are offering the last remnants of our stock, which may never be repeated.

Supplies are limited, severely in some cases, and as you can see several titles previously on offer are sold out completely.

Place your order now and grab a bargain while it's still going.

All orders and enquiries to: - CT Software
 145 Charing Cross Road,
 London WC2H OEE.

All programs are $£ 7.50$ except 13 R which is $£ 17.50$.

Brian Gilbert

A guide to the art of successful programming techniques.

whilst it is quite possible to sit at a terminal or one's personal computer, and write programs the proof of the pudding (or the programmer's equivalent) is in the running. Do you sometimes find that your 'perfect' program, which you had always thought bug-proof, ups and dies all over the place! If you have ever found yourself in this position then you should read on. An absolute cure is certainly not quaranteed but the very admission that your highly prized software may not be as good as you thought can only open your eyes to the dangers that lurk. Become a systematic programmer and save yourself wasted hours, after all you can use them to play that 64K Startrek you were thinking of coding up when you spotted this article!

Stages In Programming

Your program may be part of a system in which case the System Designer should provide you with the initial documentation otherwise you must create it yourself. The initial documentation should consist of

1. Program Description. An outline of the purpose of the program in a few lines followed by a detailed description in plain language that the user can understand and confirm as meeting his requirements.
2. A diagram showing the program with its input and output files. This gives the reader a quick picture into which the detail can be fitted
3. Copies of the File Specs
4. Copies of the Record Layouts.
5. Copies of the Print Charts and Screen Layouts.

You should be able to commence programming in the belief that there are no questions that need answering to complete the program. Life is not like that of course, Questions will often arise but the sooner they are handled the better and it is asking for trouble to continue when you know they exist.

Flowcharting Simple Programs

Take a sheet of plain A4 paper and start in the top left hand corner, with the terminal symbol. Co downwards and in the appropriate symbol put the first step mentioned in the detailed description. If it was a question with more than one answer then the symbol will have more than one exit line. Carry on down with the first alternative and do the next symbol with its content. Eventually this path will either loop back or reach the end. What else can it do? Now return to the first path you left in mid-aid and finish that one, and so on till all loose ends have been handled. The finer points are expanded upon later but for the moment you have reduced the plain language description to a series of statements that you know can be coded using the COTO statement to link any blocks which do not follow consecutively in the coding. You can code them from top to bottom, left to right without further concern about the order other than that.

Now you can think about the program in terms of the flowchart which is easier than in terms of the
coding which, in most cases, constitutes unnecessary detail. If you ever have to modify it then modify the flowchart before the coding.

SYSTEM SYMBOLS

Fig 1. Some typical flowcharting symbols and their uses.

Coding

Write out the coding. Think about it as you do it. On your flowchart you should pencil in corresponding statement numbers. Start a new block in the thousands for every page and leave large gaps where you anticipate change. Remember to go from top to bottom, left to right as you number the blocks. Now code each block as a group of statements, the first one having the statement number penciled in above the block.

As each new Variable is used add it to a list of variables. (see Table 1) Finally you can key in the coding.
\(\left.$$
\begin{array}{ll}\text { XM } & \begin{array}{l}\text { Random Number in range }-1,0,+1 \\
\text { controlling horiontal movement of }\end{array}
$$

\& "Brush".

YM \& Ditto for vertical movement\end{array}\right\}\)| X axis coordinate for drawing border | |
| :--- | :--- |
| Y | Y axis for coordinate for drawing border |

Table 1. The variable list for MATISSE

Sightchecking

List the program as keyed in without attempting to run it. If you haven't got a printer then work from the screen. Check all the coding against the flowchart and print charts etc. Do not check against coding sheets as this does not pick up your coding errors.

Do not attempt to run the program as you will be tempted to fix only the obvious errors. Little used parts of the program can hide bugs for a very long time

Test Description And Test

Write down what each test "shot" is to test, what is to be fed in and the anticipated results. You will begin to realise, maybe for the first time, that it is often impossible to test all possible permutations and combinations. That is why you need a sound approach which minimizes the number of errors or at least one of the reasons. You should exercise each statement at least once and feel that if and when undiscovered errors show up they are not likely to cost more effort than is needed to find them now.

If the program is part of a system then the System Designer should also have provided test data which merely tests that it will work if the rest of the system works properly. You should now check for any data which could crash your program due to an external error. For example, the System Designer may say a field will never be zero. You should still test it for zero if you are going to divide with it, and report via a message or error code if it is zero. If the computer knows why it can't handle something then make it give a message to the user, not just smirk!

Test, Test And Test Again

Run the test and have someone else check the results. If it is a game then get a lot of people to play it As you check each stage you should go over the preceding stage in your mind. It is very likely that you will learn something that makes you feel you could improve significantly on something and want to go back and do so. Don't be afraid to do it, that's the way to improve fast. Just remember to review the subsequent work as well and revise where necessary

An Example

Program Name: MATISSE (After the French painter.) Outline: A seemingly original picture is drawn, consisting basically of straight lines. To the casual observer the lines are neither random nor part of a rigid pattern, leaving him to wonder whether if drawn by a person it would be accepted as art

Fig 2. A specimen I/O diagram. Although it is almost too trivial for our example program it is worth drawing when you are tackling larger problems.

Fig 3. The main routines for the MATISSE program.

Detail: The screen is cleared and the program title is displayed. The user is invited to "Press Enter To Continue". When he does so the screen is again cleared. A border is drawn round the sides of the screen. A point appears at a random location within the border. Another point appears above it, or below it or at an angle of 45 degrees. They are adjacent and so form a line. The line is extended in the original direction until it reaches the border or an existing point. At this time the line takes a new direction if all surrounding points are not occupied. If they are occupied then there is a pause to give the user time to admire the picture. The screen is then cleared an a fresh picture drawn until five pictures have been displayed. The program then ends.

The fascination of the program lies in the user's attempts to forecast how long the drawing of the picture will continue before it ends.

SYSTEMATIC PROGRAMMING

Fig 4. The subroutine to draw one picture from the MATISSE program.

```
0999 CLS
1000 PRINT"MATISSE VERSION 110"
1010 PRINT "WRITTEN BY BRIAN GILBERT"
1020 PRINT "21ST APRIL 1980"
1030 REM FOR TRS80
1040 INPUT "PRESS ENTER TO CONTINUE";A
2000 CLS
2120 FOR X=0 TO 127: FOR Y=0 TO 47 STEP 47
    SET(X,Y)
2125 NEXT Y: NEXT X
2130 FOR Y=0 TO 47: FOR X=0 TO 127 STEP 127:
    SET(X,Y)
2135 NEXT X: NEXT Y
2140 XP=RND(125) + 1:YP = RND(45) +1
2200 GCSUB }600
5000 FOR P=1 TO 1000: NEXT P
5100 REM
5110 PI= PI +1
5 2 0 0 ~ I F ~ P I = 5 ~ T H E N ~ G O T O ~ 2 9 9 9 9 ~ E L S E ~ G O T O ~ 2 0 0 0 ~
6000 XM=RND(3)-2:YM=RND(3)-2
6010 IF POINT((XP + XM),(YP + YM))
    THEN GOTO 6100 ELSE GOTO }602
6020 TR =0
6030 XP=XP + XM:YP=YP +YM
6040 SET(XP,YP): GOTO 6010
6 1 0 0 ~ T R = T R + 1
6110 IF TR > 99 THEN GOTO 6990 ELSE GOTO 6000
6 9 9 9 ~ R E T U R N
29999 STOP: GOTO }100
```

Fig 5. The program listing of MATISSE.

Its so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold approximately twelve issues and is attractively bound and blocked with the COMPUTING TODAY logo.

Please allow $3 / 4$ weeks for delivery of order. Nat Giro No 5157552
Price UK $£ 3.95$ including postage, packing and V.A.T., overseas orders add 30 p. Why not place your order now and send the completed coupon below with remittance to:-
EASIBIND LTD., 4 UXBRIDGE STREET, LONDON W8 7SZ Tel. 01-727 0686
its eas with LISULILLD Easibind Ltd,4 Uxbridge St,,London,W8TSZ. Order Form
I enclose po/cheque value ... binders BLOCK LETTERS PLEASE
NAME \qquad
ADDRESS
DATE
Registration No. 307469.

5หรाEn
 KITS
 from £225㫜 $\underline{225}$

Microprocessor board* (Nascom 2) 4 MHz Z80 CPU: TV or Video +1200 baud Kansas City + Serial RS 232 printer Interfaces; Keyboard; 128 character ASCII plus 128 Graphics in $2 \times 2 \mathrm{~K}$ ROM; free 16-way parallel port; 8K BASIC; NAS SYS operating monitor. £280 built and tested. Firmware \& MOS ICs
Zeap Assembler ($4,1 \mathrm{~K} \times 8$ EPROMS) £50 Nas Pen text editor ($2,1 \mathrm{Kx8}$ EPROMS) $£ 30$
Floppy disc system
Double sided, double density 5lin disc giving 280 K bytes formatted, including controller board/PSU/Housing and interconnects $£ 480$.
Controller board $£ 127.50$ Second Disc £240.
CP/M $\mathbf{E 8 0}$
System 80 housing
High strength GRP moulding
Accepts 12×8 Nascom 2 CPU board, four 8×8 expansion boards. $£ 85 \mathrm{incl}$ frame racking, interconnects and motherboard.
Expansion boards (in kit form)
16K Ram $£ 127.50$ - 32K RAM $£ 175.00$ 48 K RAM $£ 220.00$
High Resolution Programmable Graphics $£ 90$ Colour Board Kit £140
High Resolution Colour add on $£ 37.50$
All prices subject to VAT. Add 15%.

COMPUTER KEYBOARDS

TASA 56 key touch sensitive keyboard. All ASCll characters including control keys. Parallel output with strobe. Shift lock. Keys coded in 3 colours to $0.385^{\text {t" }}$ thick. 8 lack resin encapsulated.
0.385^{+1} thick. 8
49.50 + VAT
STAR DEVICES MK III 71 keytouch sensitive key board. With numeric pad. All ASCII characters board. With numeric pad. All ASCll characters output with strobe. Shift lock with indicator LED. Built in 'beeper' with level control. 5 V DC at 300 mA Buit in 'beeper' with evel control. $5 V$ DC at 300 mA
$15^{\prime \prime} \times 7^{\prime \prime} \times x^{1} 25^{\prime \prime}$. Grev case with white keys on blue.
48.50 phe 48.50 plus VAT CARTER 57 key ASCII keyboard. Conventional key board. 128 ASCII characters including control keys. -12 V DC. $12^{\prime \prime} \times 5.5^{\prime \prime} \times 1.5^{\prime \prime}$. Black keys with white ledgends.
39.34 + VAT

FERRANTI - "SIZE $14 \times 6 \times 3^{\prime \prime}$ SLOPING FRONT" 55 Key ASCll Coded in steel case. Complete with Plug and Cable with circuit to convert to T.T.L levels.
In good condition at only $£ 25+V A T, P / P £ 2.50$

No more slaving over hot soldering iron the Nascom 1 is now supplied BUILT!
Britain's biggest small system is available fully constructed for you to slot into your own housing for the ridiculously low price of $£ 140$ plus VAT (kit price still only $£ 125$ plus VAT).

nascom-

$12^{\prime \prime} \times 8^{\prime \prime}$ PCB carrying 5LSI MOS packages, 161 K MOS memory packages and 33 ThL packages There is on-board interface for UHF or un modulated video and cassette or teletype. The 4 K memory block is assigned to the operating system, video display and Eprom option
RAM.
The MPU is the standard 280 which is capable of executing 158 in including all 8080 code.

NASCOM PRODUCT LIST + VAT
lo board kit less J/O chips
UART + BAUD rate general
45.00
bTC - MK3882 muttiple interrupt driven
clock generator for $1 / O$ board
P/IO - MK3881 + interconnect for I/O
$\mathrm{P} / 10$ interconnect only (for 1/O board) 8.50
3.80

Econographics kit for additional 128 characters (N1 only)

Nascom $19^{\prime \prime}$ rack mounting card frame for N1 and N2
Nas-DA disassembler 3 EPROM for Nas-
SYS
Naspen VS in 2 EPROM
Nas-sys monitor in 2 EPROM
Nasbug T2 $\$ \times$ EPROM
Nasbug 12 ? ERROM
Nasbug
Tiny Basic $2 \times E P R O M$
Super Tiny Basic $3 \times$ EPROM
Super Tiny Basic upgrade $1 \times$ EPROM
Tape Software
ZEAP 1.2 tape and documentation for N1
ZEAP 2 tape and documentation for
Nas-Sys
8K BASIC tape and documentation for N1 $\quad 15.00$ 20% for 1
20% for 16
MK3880 (Z80) for N1

M13880-N4 (ZBOA) for N2	7.50
.95	

MK4116 16K x 1 dynamic RAM
MK4027 4K $\times 1$ dynamic RAM
$21021 \mathrm{~K} \times 1$ static RAM
$41181 \mathrm{~K} \times 8$ static RAM
Unprogrammed 2708
Unprogrammed 2716
IM6402 UART
2114 1K $\times 4$ Static RAM
8080A
40.00
30.00
30.00
25.00
25.00
12.50
12.50
25.00
25.00
37.50
37.50

-

CENTRONICS QUICK PRINTER

OUR
PRICE $£ 195.00$ plus VAT

EXCLUSIVE TO HENRY'S

50\% OFF MAKER'S PRICE
for: Software selectable 20. 40 and 80
TANDY column using 120 mm aluminiumPET, 150 lines per minupplied.
ASCOMpCentronics parallel data interface for Nascom. Tandy, etc.
240 volt mains input. ASCII character se Paper feed, and onfoff select switches 'BELL' sianal Weight 10 lbs
New, boxed and fully guaranteed
POST PAID Price $\mathbf{£ 1 9 5 . 0 0}+$ VAT
See COMPUTING TODAY Recommendations

Microtan 65 Kit , Incl. VAT Microtan 65 Assembled, Incl. VAT Tanex (min con) Kit, Incl VAT $\mathbf{£ 9 0 . 8 5}$
COMPUTER SYSTEMS LONDON STOCKISTS Tanex Assembled Incl. VAT

Lower case pack, Incl. VAT
£10.90 Chunky Graphics Pack, Incl. VAT $£ 7.50$ 20 Way Keypad Incl. VAT
£11.50 Mini-mother board Incl. VAT £9.95 Complete Tangerine range available

SEND FOR COMPLETE COMPUTER BROCHURE FREEPOST TO ADDRESS BELOW

London Tangerine and National
Nascom Distributor
Export Orders deduct VAT, but add 5\% carriage Official Export \& Educational Orders welcome
Our Telex 262284 Mono Ref. 1400 Transonics

ADD VAT
HENRY'S
TO YOUR
ORDER
EXCEPT
WHERE
STATED

PEA GAME

TIhis game is an implementation in BASIC of the old "Pea under a cup" guessing game. Written for the Research Machines 380 Z it can be adapted for most systems. The rules of the game are included in the listing between lines 620 and 720 and may be removed if required.

Program Explanation

The operation of the program is as follows; lines 200-330 plot the three "cups" on the screen, the data is stored in 300, 310 and the number plotting is contained in 330.
Having plotted the cups a pea, asterisk symbol, is plotted under one of the cups and then erased. After a delay, set by the value input in lines 170-190, the pea is re-plotted under another cup in a random fashion. This continues for a random number of moves, the routine is located in 350-440.

You are then asked to guess where the pea is, $450-490$ and told if your answer is correct. The whole process is repeated twice and a final score is given with comments as to your ability, lines 510 to 560 .

It should be noted that the following commands are probably unique to the RML BASIC and will need to be changed when transferred to other systems; CLS is, as usual, the clear screen code (CHR\$ (12) for the $380 Z$, GRAPH 1 sets the screen for scrolling on the bottom four lines only, GRAPH 0 sets the screen to normal, scrolling mode, PLOT $X, Y, 2$ will plot a small white square at the X, Y, co-ordinate.

Program Listing

100 REM *** THE PEA GAME ***
110 CLEAR 100
120 PRINT [CLS]
130 INPUT" WOULD YOU LIKE INSTRUCTIONS"; A \$
140 IF $A \$=$ "YES" OR $A \$=$ " Y " THEN 610
150 IF $A \$=" N O "$ OR $A \$=" N "$ THEN 170
160 PRINT" ANSWER PROPERLY":GOTO 130
170 INPUT " DIFFICULTY LEVEL(1-10)";DL
180 IF DL > 10 OR DL < 1 THEN DL $=10$
$190 \mathrm{DL}=\mathrm{INT}((11-\mathrm{DL}) * 20)$
200 REM * * * PLOT UP BELLS ***
210 PRINT [CLS]:GRAPH 1
220 FOR $B=13$ TO 45 STEP 16
230 FOR $A=1$ TO 32
240 READ X, Y
250 PLOT $X+B, Y+20,2$
260 NEXT A
270 RESTORE
280 NEXT B
290 PLOT 20,35,49:PLOT 36,35,50:PLOT 52,35,51
300 REM *** DATA FOR PLOTTING BELLS * **
310 DATA 1, 1, 2, 1, 2, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7,3,8, $3,9,4,10,4,11,5,12,6,13,7,13,8,13,9,13$

320 DATA $10,12,11,11,11,10,12,9,12,8,12,7$. $12,6,12,5,12,4,12,3,13,2,13,1,14,1,1,1$, 1,1,1,1
330 PLOT 20,35,49:PLOT 36,35,50:PLOT 52,35,51
340 PRINT" WATCH CLOSELY" :FOR $Z=1$ TO 750:NEXT Z
350 FOR $\mathrm{F}=1$ TO INT(RND(1)*20 + 20)
360 REM * * * WORK OUT PEA POSITION * * *
$370 \mathrm{C}=\operatorname{INT}(\mathrm{RND}(1) * 3+1)$
380 REM * * * PLOT PEA ***
390 PLOT C* $16+4,22,42$
400 REM *** ERASE PEA ***
410 PLOT C* $16+4,22,32$
420 REM *** DELAY LOOP ***
430 FOR $\mathrm{E}=1$ TO DL:NEXT E
440 NEXT F
450 REM *** WHERE IS THE PEA ? ***
460 INPUT" WHERE'S THE PEA";
470 IF I = C THEN W = W + 1:? "LUCKY GUESS": GOTO 490
480 PRINT" HARD LUCK"
$490 \mathrm{H}=\mathrm{H}+1$:IF $\mathrm{H}<3$ THEN 340
500 REM *** THE GAME IS OVER ***
510 ON W + 1 GOTO $520,530,540,550$
520 PRINT" HARD LUCK ";:GOTO 560
530 PRINT" OH WELL!! " ;:GOTO 560
540 PRINT" NOT BAD ";:GOTO 560
550 PRINT" WELL DONE ";
560 PRINT" YOU SCORED";W;" OUT OF 3"
570 INPUT" ANOTHER GAME";A\$
580 IF A\$ = "YES" OR A\$E"Y" THEN RUN
590 END
600 REM *** INSTRUCTIONS ***
610 GRAPH O:PRINT[CLS]
620 PRINT" YOU MUST FIRST STATE THE LEVEL OF"
630 PRINT" DIFFICULTY THAT YOU WOULD LIKE TO"
640 PRINT" PLAY TO, IN THE RANGE OF 1 TO 10."

650 PRINT
660 PRINT" THEN 3 'BELLS' WILL APPEAR ON THE"
670 PRINT" SCREEN AND A 'PEA', WHICH IS SHOWN"
680 PRINT" BY * , WILL MOVE RANDOMLY BETWEEN"
690 PRINT" THEM."
700 PRINT
710 PRINT" WHEN THE PEA HAS STOPPED MOVING"
720 PRINT" AND HAS DISAPPEARED, YOU MUST SAY"
730 PRINT:PRINT:PRINT
740 INPUT "HIT 'RETURN' TO CONTINUE";A\$
750 GOTO 170

[^0]
GIUSCAN'RROM MRANSAM
 $0<8 \mathrm{PS}$

Take astep up toyour next Computer!

THE CONCEPT
How many ways are there to build an S100 system? Not many, and all expensive.TUSCAN changes all that.

Five S 100 boards on one single board - just for starters. Plus five extra slots for future expansion.

What a combination! Z80 and S100 with the TRANSAM total packąge of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE

The first Z80 single board computer with integral S100 expansion. British designed to the new IEEE (8 BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a 280 cpu card, 8 k ram, 8 k rom video and I / O cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Just compare our price with a commercial S100 ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor. editor, resident 8 k basic, resident Pascal compiler or full CP/M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $51 / 4^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top case also available holds $2 \times 51_{4}^{1 "}$ Drives.

TRANSAM

NOBODY DOES IT BETTER!

MULTIPURPOSE RECORDS

A P Stephenson

Computers were meant to handle information and this program lets them do it in any environment, from the business to the home.

Home computing as a hobby is still in its infancy and it is understandable that programming activities tend to exploit the more exciting capabilities of the computer. The compilation and processing of "records" is unfortunately a subject lacking in glamour and, apart from their use in commerce and business, remains a neglected area. There are of course commercial software houses that churn out excellent suites of programs which cater for the businessman but, from the small system users' viewpoint, they tend to suffer from high cost and inevitably require some form of disk backing store to cater for the vociferous appetites of the modern Accountants. At a guess, it is doubtful if more than one in twenty owners of a microcomputer have sufficiently recovered from the trauma of its initial purchase to even consider further expenditure on the floppy! Commercial software also assumes that facilities for hard copy output are available and refuses to cater for the underprivileged classes who don't have a printer. Thus the combination of cost, and lack of glamour has caused most enthusiasts to neglect the records area altogether. Now this is a pity. The ability of a computer to store, retrieve, select, modify and rearrange data is its most endearing quality.

Terminology Defined

A few terms need to be defined before programs can be understood. A FILE is a collection of information on one subject; for example, a file name could be "Clients Credit-worthiness" or "Lepidoptera" or "Power Transistors", "World Religions" etc., etc. Files are normally displayed as a number of rows and columns. A RECORD is any individual ROW and a DATA-ITEM is any individual column in that row.

The minimum requirements of any program which assumes the title of General Purpose Records must allow the following options:
a) Create a new file by naming the column headings and entering the records from the keyboard.
b) Save the file on backing store under an appropriate file name.
c) Load a file from backing store
d) Display the contents on the screen, page by page.
e) Retrieve a selected record or records on inputting a "search key"
f) Modify a selected record
g) Sort the order in which the records are arranged under a selected column heading.
h) Calculate the sum, averages etc of the columns (where applicable).
This program attempts to satisfy the minimum requirements and subject to the limitations imposed by small memory, will just squeeze itself into an 8 K PET providing the number of rows (size of the file) is kept to
CREATE FILE1
SAvE FILE 2
LOAD FILE 3
DISPLAY FILE 4
RETRIEVE RECORD/S 5
MODIFY RECORD 6
SORT COLUM7
COLUNA TOTALSAVARAGES 8

ENTER OPTION MUMBER

The opening "Menu" display for the program.
a modest level. With a 16 K PET there is ample room for the display and processing of several hundred records and apart from the slowness of cassette tape access, will satisfy a practical need.

Programming Notation

To get over the problems of not being able to reproduce the graphics characters produced by PET the following symbol code is used.
[CD]
[CL]
Cursor down
[CR]
[CU]
[CLS]
[HOM]
[REV]
[OFF]
[SPC]

Cursor left
Cursor right
Cursor up
Clear screen
Home
Reverse video on
Reverse video off
Space character

In addition to these codes a number of graphics are used for screen display purposes and these are represented by a number showing the number used followed by an up arrow sign and the key code which produces them. An example would be [381\#] which produces a line of horizontal bars at the top of each character space. For those of you with machines other than PETs it is really a matter of cosmetic appeal, anything found inside square brackets is a cursor or graphics code and can be ignored until the end of inputting the program.

Visual Restriction

Unfortunately, the PET screen is only 40 characters wide which restricts the number of columns in a record to about four. Even then, the column headings must be entered with restraints on the number of characters. A relatively wide field has been allowed for column one because this is normally the key to the record, such as the name of a person, animal, insect or object. If a data item is considered long the program warns of this but accepts it. Data is held in the string array $A(R, C)$ and is dimensioned in line 10 as $(100,5)$ which allows for a nominal 100 rows and 5 columns. For 8 K models, the dimensioning is too ambitious and will need reducing to say 25,5 in order to avoid that awful "'OUT OF MEMORY ERROR". For 16 K PETs on the other hand, the dimensions are too modest and can be increased to over 200 rows if desired.

File Creation

When an operator creates a file it is essential to guard against the inadvertent pressing of the RETURN key before hitting a data key. The subroutine at line 2380 prevents this on all INPUT statements. The option entitled "SORT COLUMN" employs a simple bubble sort and is rather slow for long records but the extra statements for the faster merge sort would encroach on the 8 K memory capacity still further. It will be appreciated that sorting records into some order is not a simple case of sorting a column. When a swop is necessary, every data item in the record must take part in the swop which complicates the process. Owners of 16 K models can change the bubble to a merge sort if they find the slowness irksome.

The option "RETRIEVE RECORD/S" allows an operator to selectively display all records which fall into a required catagory. Thus if one of the column headings is "ACE", we may ask for a display of all personnel of age 23. If, by chance, nobody in the file is of that age the message "RECORD NOT ON FILE" is given.

Files are stored on a "DATA" tape and the relevent patching routines to compensate for the 'early' ROM bugs are included in the program. It is possible to obtain further copies of a data tape by first loading in the tape by the option "LOAD FILE" and then using "SAVE FILE" with a blank tape. Because file creation is error prone provision exists for modifying at the end of each record and, again when the file is complete by using the option "MODIFY FILE". Once a file is complete, it can be displayed a page at a time without scrolling.

```
100 DIM A$(100,5)
110 PRINT CHR$(147)
120 PRINT"[10] [381 #] [TP]"
130 PRINT"[ [ %] CREATE FILE [23 SPC] 1 [1]"
140 PRINT"[ % %] [38 SPC] ['`']"
150 PRINT"[ % % SAVE FILE [25 SPC] 2 [ [']"
160 PRINT"[1%] [38 SPC][1]"
170 PRINT" [1%] LOAD FILE [25 SPC] 3 ['']"
180 PRINT"[ % %] [38 SPC] [ [']"
190 PRINT" [ % ] DISPLAY FILE [22 SPC] 4 [1]"
200 PRINT"[1%] [38 SPC] [ [']"
210 PRINT"[।%] RETRIEVE RECORD/S [17 SPC]
    5[1']"
220 PRINT"[ [ %] [38 SPC] [TP]"
230 PRINT" [1%] MODIFY RECORD [21 SPC] }
    [!]"
240 PRINT"[ % %] [38 SPC] ['']"
250 PRINT"[!%] SORT COLUMN [23 SPC] 7 [ [']"
260 PRINT" [!%] [38SPC] [TP]"
270 PRINT" [1%] COLUMN TOTALS/AVERAGES
    [12 SPC] 8 [1]"
280 PRINT"[TL] [38 1$] [1:]":PRINT:PRINT:PRINT
290 PRINT"[REV] ENTER OPTION NUMBER"
300 GET K$:IF K$ = " " THEN 300
310 E$ = "INPUT UNACCEPTABLE"
320 IF VAL(K $) < 1 OR VAL(K$)>8 THEN PRINT
    E$:PRINT:PRINT:PRINT:GOTO 290
330 ON VAL(K$) GOTO 340,680,980,1780,
    1830,2180,1250,1500
```


Using the calculation option on an employee file.
340 REM * * INPUT LIMITS
350 R $\$=$ " LIMIT IS 100!" :C $\$=$ " LIMIT IS 4!"
360 PRINT CHR $\$(147):$ PRINT TAB(240)
370 PRINT"HOW MANY RECORDS?" ;TAB(25);: GOSUB 2380
380 PRINT:Y = VAL(A \$(R,C)):PRINT
390 IF $\mathrm{Y}<1$ OR $Y>100$ THEN PRINT R $\$$:PRINT: PRINT:GOTO 370
400 PRINT" HOW MANY COLUMNS?" ;TAB(25);: GOSUB 2380
410 PRINT: $\mathrm{X}=\mathrm{VAL}(\mathrm{A} \$(\mathrm{R}, \mathrm{C})):$ PRINT
420 IF $\mathrm{X}<1$ OR $\mathrm{X}>4$ THEN PRINT C $\$:$ PRINT: PRINT:GOTO 400
430 PRINT CHR $\$(147): \mathrm{M}=1$
440 PRINT" GIVE COLUMN TITLE" ;M;TAB(25);: GOSUB 2380
450 PRINT:PRINT:C1 \$(M) = A \$ (R,C)
460 T1 \$ = C1 \$(1)
470 IF $\mathrm{M}=\mathrm{X}$ THEN 490
$480 \mathrm{M}=\mathrm{M}+1$:GOTO 440
490 REM * *INPUTTING ENTIRE RECORD
500 PRINT CHR\$(147)
510 PRINT" [40 18]"
520 PRINT"[7 SPC]COMMENCE ENTERING RECORDS":PRINT
530 PRINT" [7 SPC]PRESS [REV]RETURN[OFF] AFTER EACH ENTRY":PRINT
540 PRINT" 40 18]"
$550 \mathrm{~W} \$=$ " [REV]WARNING[OFF].DATA ACCEPTED.INCONVENIENT.": IR\$ = "ENTER"
560 FOR R=1 TO Y
570 FOR C $=1$ TO X
$580 \mathrm{IF} \mathrm{C}<>1$ THEN 610
590 PRINT IR§;T1\$;TAB(25);:GOSUB 2380
600 PRINT:GOTO 640
610 PRINT:PRINT IR\$;C1\$(C);TAB(25);:GOSUB 2380
620 PRINT:IF LEN(A \$(R,C)) < 7 THEN 640
630 PRINT:PRINT W\$
640 NEXT
650 PRINT:PRINT" 40 18]"
660 NEXT

MULTIPURPOSE RECORDS

An example of an Inventory type file.
670 GOTO 110
680 REM * * SAVE FILE
690 PRINT CHR\$(147):PRINT TAB(240):T $=2$
700 PRINT:PRINT" ENTER FILE NAME";TAB(18);: GOSUB 2380
710 PRINT CHR\$(147):PRINT TAB(240):PRINT
"WILL THIS BE LAST FILE ON THIS TAPE?
720 PRINT" ANSWER Y(YES) OR N(NO)":PRINT
730 GET K\$:IF K \$ = " " THAN 730
740 IF K $\$=$ " N " THEN $T=1$
750 PRINT TAB(120)
760 PRINT" HAVE YOU INSERTED A CASSETTE?": PRINT
770 PRINT" HAVE YOU REWOUND IT TO DESIRED POSITION" :PRINT
780 PRINT" HAVE YOU SWITCHED MOTOR OFF?":PRINT:PRINT
790 PRINT"[REV]YOU MUST NOW ANSWER Y(YES)"
800 GET K $\$$:IF $K \$ \gg{ }^{\prime}$ Y" THEN 800
$810 \mathrm{~F} \$=\mathrm{A} \(R, C)
820 PRINT CHR\$(147):PRINT TAB(240)
830 GOSUB 1650
840 OPEN 1,1,T,F\$
850 PRINT \# 1,Y:PRINT \# 1,X
860 FOR $R=1$ TO Y
870 FOR C $=1$ TO X
880 PRINT \# 1,A\$(R,C)
890 NEXT:NEXT
900 FOR H $=1$ TO X
910 PRINT \# 1,C1 \$(H)
920 NEXT
930 GOSUB 1670
940 CLOSE 1
950 PRINT:PRINT:PRINT" DATA NOW ON TAPE"
960 GOSUB 2620
970 GOTO 110
980 PRINT CHR\$(147):PRINT:REM **LOAD TAPE
990 PRINT" ENTER FILE NAME" ;TAB(19);:GOSUB 2380
1000 PRINT:PRINT TAB(240)
1020 PRINT"IS THIS FILE IN CASSETTE?" :PRINT

1030 PRINT"IS IT REWOUND?":PRINT
1040 PRINT"IS THE MOTOR SWITCHED OFF?": PRINT:PRINT:PRINT
1050 PRINT"IF SO, ANSWER Y(YES)"
1060 GET H\$:IF H\$ = " " THEN 1060
1070 IF H\$ < > "Y" THEN 1060
1080 PRINT CHR\$(147):PRINT TAB(240)
$1090 \mathrm{~F} \$=\mathrm{A} \(R, C)
1100 OPEN 1,1,0,F\$
1110 INPUT \# 1,Y\$:INPUT \# 1,X\$
1120 GOSUB 1740
$1130 \mathrm{Y}=\mathrm{VAL}(\mathrm{Y} \$): \mathrm{X}=\mathrm{VAL}(\mathrm{X} \$)$
1140 FOR $R=1 \mathrm{TO} \mathrm{Y}$
1150 FOR C $=1$ TO X
1160 INPUT \# 1,A \$(R,C)
1170 GOSUB 1740
1180 NEXT:NEXT
1190 FOR $\mathrm{H}=1 \mathrm{TO} \mathrm{X}$
1200 INPUT \# 1,C1\$(H)
1210 GOSUB 1740
1220 NEXT
1230 CLOSE1:GOSUB 2620
1240 GOTO 110
1250 REM * * SORT
1260 PRINT CHR\$(147)
1270 PRINT" ENTER COLUMN HEADING" ;TAB(30);
1280 GOSUB 2380
1290 GOSUB 2620
1300 PRINT CHR\$(147):PRINT TAB(250);" SORT PROCEEDING"
1310 D $\$=A \(R, C)
1320 FOR $\mathrm{M}=1 \mathrm{TO} \mathrm{X}$
1330 IF D $\$=\mathrm{C} 1 \(M) THEN $\mathrm{C}=\mathrm{M}$
1340 NEXT
1350 FOR $\mathrm{J}=2 \mathrm{TO} \mathrm{Y}$
$1360 \mathrm{R}=\mathrm{J}-1$
$1370 \mathrm{~A} \$=\mathrm{A} \$(\mathrm{~J}, \mathrm{C})$
1380 IF $\mathrm{A} \$>=\mathrm{A} \(R, C) THEN 1470
1390 A $\$(R+1, C)=A \(R, C)
1400 FOR L=1 TO X
1410 T\$ = A \$ (R,L)
1420 A $\$(R, L)=A \$(R+1, L)$
$1430 \mathrm{~A} \$(\mathrm{R}+1, \mathrm{~L})=\mathrm{T}$ \$
1440 NEXT L
$1450 R=R-1$
1460 IF R >0 THEN 1380
1470 A $\$(R+1, C)=A \$$
1480 NEXT J
1490 GOTO 110
1500 PRINT CHR\$(147)
1510 PRINT" TOTALS":PRINT
1520 GOSUB 2660
1530 PRINT T5(1);TAB(15)T5(2);TAB(23)T5(3) TAB(31)T5(4)
1540 PRINT"[4018]":PRINT:PRINT:PRINT
1550 PRINT" AVERAGES" :PRINT
1560 GOSUB 2660
1570 IF $\mathrm{Y}=0$ THEN $\mathrm{Y}=1 \mathrm{E}-30$
1580 FOR G $=1$ TO X
$1590 \mathrm{~T} 5(\mathrm{G})=\mathrm{T} 5(\mathrm{G}) / \mathrm{Y}: \mathrm{T} 5(\mathrm{G})=\mathrm{INT}(100 * \mathrm{~T} 5(\mathrm{G})) / 100$

MULTIPURPOSE RECORDS

1600 NEXT
1610 PRINT T5(1)TAB(15)T5(2)TAB(23)T5(3)TAB (31)T5(4)

1620 PRINT"[40 18]"
1630 PRINT:PRINT:PRINT:GOSUB 2620
1640 GOTO 110
1650 REM * * PREPARE TO OPEN WRITE
1660 POKE 243,122:POKE 244,2:RETURN
1670 REM * * PREPARE TO CLOSE WRITE
1680 IF $\operatorname{PEEK}(625)>180$ THEN 1700
1690 RETURN
1700 POKE 59411,53:T8 = TI
1710 IF TI-T8<6 THEN 1710
1720 POKE 59411,61
1730 RETURN
1740 REM * * FOLLOW INPUT \# 1 BREAK
$1750 \mathrm{IF}(\mathrm{ST})=0$ OR $(\mathrm{ST})=44$ THEN 1770
1760 PRINT" STATUS ERROR"
1770 RETURN
1780 REM * * PRINT FILE
1790 GOSUB 2440
1800 PRINT
1810 GOSUB 2620
1820 GOTO 110
1830 REM * *SELECT RECORD
1840 GOSUB 1870
1850 GOSUB 2620
1860 GOTO 110
1870 REM * * EXAMINE RECORD
1880 PRINT CHR $\$$ (147):PRINT:M2 $=0$
1890 IF M2 = 1 THEN 1980
1900 PRINT:PRINT:PRINT:PRINT"ENTER COLUMN HEADING \qquad
$1910 \mathrm{~J}=0: Z=0: K=0$
1920 GOSUB 2380
$1930 \mathrm{~F} \$=\mathrm{A} \$(\mathrm{R}, \mathrm{C}): \mathrm{PRINT}: \mathrm{M} \$=\mathrm{F} \$$
1940 FOR $M=1$ TO X
1950 IF F $\$=\mathrm{C} 1 \(M) THEN $Q=\mathrm{M}: J=1$
1960 NEXT
1970 IF $\mathrm{J}=0$ THEN PRINT:PRINT" NO SUCH COLUMN EXISTS":PRINT:GOTO 1900
1980 PRINT:PRINT"ENTER SEARCH DATA";
1990 Z = O:K = 0
2000 GOSUB 2380
2010 PRINT:D1 = 0
2020 PRINT CHR\$(147):PRINT TAB(120)
2030 GOSUB 2660
$2040 \mathrm{R} \$=\mathrm{A} \(R, C)
2050 FOR $R=1$ TO Y
$2060 \mathrm{Z}=0$
2070 FOR $\mathrm{C}=1$ TO X
2080 IF $A(R, Q)=R \$ \operatorname{THEN}$ PRINT $A \$(R, C)$; $T A B\left(08+8^{*} C\right): Z=1: R 1=R: D 1=1$
2090 NEXT
2100 IF $Z=0$ THEN 2120
2110 PRINT
2120 NEXT
2130 PRINT" [40 18]"
2140 PRINT:IF D1 = 0 THEN PRINT" RECORD NOT ON FILE" : $\mathrm{G}=1$

2150 RETURN
2160 GOSUB 2620
2170 GOTO 110
2180 REM * * MODIF REC
$2190 \mathrm{M} 2=1: \mathrm{Q}=1$
2200 PRINT CHR\$(147)
2210 PRINT" THE TERM SEARCH DATA BELOW REFERS TO"
2220 PRINT"[9 SPC][11 18]"
2230 PRINT" WHICH ";C1 \$(1)
2240 GOSUB 290
2250 PRINT
2260 IF D $1<>0$ THEN 2290
2270 PRINT:GOSUB 2620
2280 GOTO 110
2290 F\$ = C1 \$(1)
2300 PRINT" PROCEED TO MODIFY":PRINT
2310 FOR $\mathrm{C}=1$ TO X
2320 PRINT IR\$;" ";C1\$(C);"." ;TAB(20)
2330 GOSUB 2380
2340 L\$ = A \$ (R,C)
2350 A $\$(\mathrm{R} 1, \mathrm{C})=\mathrm{L} \$:$ PRINT:PRINT
2360 NEXT
2370 GOTO 110
2380 REM * * CRASH PROOF INPUT
2390 OPEN 1,0
2400 INPUT\# 1,A \$(R,C)
2410 IF $A \$(R, C)="$ " THEN 2400
2420 CLOSE 1
2430 RETURN
2440 REM**SR TO PRINT FILE
2450 PRINT CHR\$(147)
2460 GOSUB 2660
$2470 \mathrm{~S}=1: \mathrm{V}=1: \mathrm{T} 5(1)=0: T 5(2)=0: T 5(3)=0:$ $T 5(4)=0$
2480 FOR R $=1$ TO Y
2490 FOR $\mathrm{C}=1$ TO X
$2500 \mathrm{~T} 5(\mathrm{C})=\mathrm{T} 5(\mathrm{C})+\mathrm{VAL}(\mathrm{A} \$(\mathrm{R}, \mathrm{C}))$
2510 IF C >1 THEN 2540
2520 PRINT A $\$(R, C)$;
2530 GOTO 2550
2540 PRINT TAB(O8-8*C)A\$R,C);
2550 NEXT
2560 PRINT
2570 IF S $=18$ THEN GOSUB 2620
2580 IF $\mathrm{S}=18$ THEN $\mathrm{S}=1$
$2590 \mathrm{~S}=\mathrm{S}+1$
2600 NEXT
2610 RETURN
2620 REM * * PRESS K
2630 PRINT:PRINT" PRESS ANY KEY"
2640 GET K $\$: I F K \$="$ " THEN 2640
2650 RETURN
2660 REM * * PRINT TABLE HEADINGS
2670 PRINT"[40 18]"
2680 PRINT C 1 \$(1);TAB(16)C1\$(2);TAB(24) C 1 \$(3) TAB(32)C1 \$(4)
2690 PRINT"[40 18]"
2700 RETURN

Sharp have been associated with many major advances in electronic technology in space and here on Earth. We have introduced the most sophisticated production techniques for electronic circuitry to set world renowned standards of reliability into every product.

That's why the MZ-80K and its range of peripherals is going to change the way you think about microcomputers. The Sharp MZ-80 System now includes the MZ-80K processor backed with the MZ-80FD dual drive, double sided mini-floppy disk unit to give rapid, effective, sequential and random access, to huge amounts of stored information with incredibly fast response times.

Our new MZ-80P3 printer makes a good impression as well. Its fine definition dot matrix

SHARP COMPUTER APPLCATIONS

Business Systems. Audıo, Video, Calculators, Cash Registers, Copiers, Microwave Ovens.
head prints across 80 columns, at 100 characters per second, with full graphics capabilities.

The Sharp MZ-80 System is a new approach to computer applications, and their efficient use by human beings.

Our aim is to make computers and their related equipment relatively simple and therefore better understood and better used by those they are designed to serve.

Whether you are looking for a business system, or a system for educational or personal use-take a look at Sharp, it will change the way you think about computers.

Send me details of the complete Sharp MZ-80 System and the name and address of my nearest stockist
Name
Address

Sharp Electronics (UK) Limited, Sharp House, Thorp Road,
Newton Heath, Manchester. M109BE Tel: 061-205 2333

BASIC LIFE

Paul Evans

playing the game of Life is an addictive occupation and it is one of the most popular games programs. This version is unusual in that it is written in UK101 BASIC and only uses 4 K of memory. The rules of the game are as follows;

1) each cell can hold one organism and is deemed to be 'adjacent' to eight other cells around it,
2) if the organism is adjacent to less than two others it will die of loneliness,
3) if the organism is adjacent to more than three others it dies of overcrowding,
4) if an unoccupied cell is adjacent to exactly three organisms a new organism is formed in that cell,
5) all 'births' and 'deaths' occur simultaneously.
Another rule usually considered is that the game is played on an infinite plane divided into cells but in this version the size of the screen and the time taken to perform each move have limited the space available.

Running The Program

After RUN is typed the playing area is outlined by a rectangle and commands for cursor control, producing and deleting cells and starting and stopping growth are given. Using these commands a colony of organisms is set up and the game can start

At any time during the game the growth can be terminated by pressing ' 8 ' which induces stagnation. Natural stagnation will occur when, at the end of a scan, no cells have either been 'born' or have 'died'. As a result of this the screen is cleared but the generation count is still maintained as a score.

Observations

The routine in lines 170-290 which forms the rectangle uses the following data format, NC, SL, TY, NL,O where NC is the number of characters per line, SL is the start location of the characters, TY is the character type and NL is the number of lines.

Cursor control is handled in lines 310-470 and uses a monitor subroutine to input characters from the keyboard. Line 430 stops the cursor from moving outside the playing area.

The main difference between this and other games of Life is the "Cell Scan" routine which is located from 530-650. Instead of housing the colony status in an array or matrix this program uses the character slots in the video RAM as the cells, the graphics character 226 being an organism and a blank space being an empty cell. This saves time on transmitting matrix information to the screen and also uses less RAM.

The actual scan process involves PEEKing the character slots adjacent and adding one to the FC count for each organism found. Replacing lines 560-630 with a subroutine would slow the scan rate by about 25 seconds so the method given has to be used

The section of the program that looks after the 'birth' and 'death' of cells is located from 650-690. The
arrays B and D limit the number of cells that can be generated or destroyed in each cycle. DIMensioning them both for 70 elements is large enough for most colonies and will still fit within a 4 K machine.

All the rest of the code is fairly straightforward, hence the lack of flowcharts. Replacing lines 540-890 with a machine code routine would speed the game up considerably and should not be too hard to attempt as all locations are absolute.

```
    10 REM***LIFE BY EVANS***
    20 DIM D(70),B(70)
    3 0 ~ R E M ~ * ~ * ~ D I S P L A Y ~ * * * * * )
    40 PRINT:PRINT:PRINT TAB(26);" generation"
    50 PRINT:PRINT:PRINT" control"
    60 PRINT" - - . . . . - "
    70 PRINT" 1 = ";CHR$(94)
    80 PRINT" 2 = ";CHR$(20)
    90 PRINT" 3 = ";CHR$(22)
100 PRINT" 4 = ";CHR$(18)
110 PRINT" 5 = cell"
120 PRINT" 6 = delete"
130 PRINT" 7 = start"
140 PRINT" 8 = stop"
150 PRINT
160 REM**RECTANGLE**
170 DATA 35,53399,128,1
180 DATA 1,53462,153,12
190 DATA 1,53498,152,12
200 DATA 35,54231,135,1,0
210 READ NC:IF NC = O GOTO 310
220 READ SL,TY,NL
230 FOR X1 = 1 TO NL
240 FOR X2 =0 TO NC - 1
250 POKE SL + X2,TY
260 NEXT X2
270 SL = SL + 64
280 NEXT X1
290 GOTO 210
300 REM * * CURSOR/CONTROL**
310 CUR = 54167:CS = 32
320 POKE CUR,161
330 POKE 11,0:POKE 12,253:O=USR(O)
340 A = VAL(CHR$(PEEK(531)))
350 IF A = 5 THEN CS = 266:GOTO 330
360 IF A =6 THEN CS = 32:GOTO 330
370 IF A = 7 THEN POKE CUR,CS:GOTO 490
380 IF A = 1 THEN EX = -64
390 IF A = 2 THEN EX = 64
400 IF A = 3 THEN EX = - 1
410 IF A = 4 THEN XE=1
4 2 0 ~ V ~ = ~ P E E K ( C U R ~ + ~ E X ) ~
430 IF V<>>32 AND V <> 226 GOTO 330
440 POKE CUR,CS
450 CUR = CUR + EX
460 CS = PEEK(CUR)
470 GOTO 320
480 REM * * GENERATION COUNTER**
490 G$ = SRT $(G):L=LEN(G$)
500 FOR X3=1 TO L
510 POKE 53364 - X3,ASC(MID$(G$,L - X3 + 1,1))
```

```
520 NEXT X3
530 REM * \({ }^{*}\) CELL SCAN **
\(540 \mathrm{~S}=53463: \mathrm{BP}=1: \mathrm{DP}=1\)
550 FC \(=0\)
\(560 \operatorname{IFPEEK}(\mathrm{~S}-65)=226\) THEN FC \(=\mathrm{FC}+1\)
\(570 \mathrm{IF} \operatorname{PEEK}(\mathrm{S}-64)=226 \mathrm{THEN} \mathrm{FC}=\mathrm{FC}+1\)
\(580 \mathrm{IF} \operatorname{PEEK}(\mathrm{S}-63)=226 \mathrm{THEN} \mathrm{FC}=\mathrm{FC}+1\)
\(590 \mathrm{IF} \operatorname{PEEK}(\mathrm{S}-1)=226 \mathrm{THEN} \mathrm{FC}=\mathrm{FC}+1\)
\(600 \operatorname{IF} \operatorname{PEEK}(\mathrm{~S}+1)=226\) THEN FC \(=\mathrm{FC}+1\)
\(610 \mathrm{IF} \operatorname{PEEK}(\mathrm{S}+63)=226\) THEN FC \(=\mathrm{FC}+1\)
\(620 \operatorname{IF} \operatorname{PEEK}(S+64)=226\) THEN FC \(=F C+1\)
\(630 \mathrm{IF} \operatorname{PEEK}(\mathrm{S}+65)=226\) THEN FC \(=\mathrm{FC}+1\)
640 REM **DECIDE BIRTH/DEATH**
\(650 \operatorname{IF} \operatorname{PEEK}(\mathrm{~S})=226\) GOTO 680
660 IF FC \(<>3\) GOTO 710
\(670 \mathrm{~B}(\mathrm{BP})=\mathrm{S}: \mathrm{BP}=\mathrm{BP}+1: \mathrm{GOTO} 710\)
680 IF FC \(>\) AND FC < 4 GOTO 710
\(690 \mathrm{D}(\mathrm{DP})=\mathrm{S}: D P=D P+1\)
700 REM * * INCREMENT TO NEXT CELL**
710 S = S + 1
\(720 \operatorname{IF} \operatorname{PEEK}(\mathrm{~S})=152\) THEN \(\mathrm{S}=\mathrm{S}+29\)
730 REM * * TEST FOR KEY'8'* *
740 POKE 530,1:POKE 57088,191
\(750 \mathrm{~K}=\operatorname{PEEK}(57088):\) POKE 530,0
760 IF K \(=127\) GOTO 910
770 IF S \(<>54231\) GOTO 550
780 IF DP \(=1\) AND BP \(=1\) GOTO 910
```

```
790 REM**IMPLEMENT DEATHS**
800 FOR X4 = 1 TO DP - 1
810 POKE D(X4),32
820 NEXT X4
830 REM**IMPLEMENT BIRTHS**
840 IF BP = 1 GOTO 890
8 5 0 ~ F O R ~ X 5 ~ = ~ 1 ~ T O ~ B P - 1 ~
860 POKE B(X5),226
8 7 0 ~ N E X T ~ X 5 ~ 5 - ~ \$ 5
800 REM * * NEXT GENERATION**
890 G = G + 1:GOTO 490
900 REM**STAGNATION ROUTINE**
910 FOR X6 =0 TO 9
920 POKE 53335 + X6,ASCIMID$
    ("STAGNATION",X6 + 1,1))
930 NEXT X6
940 REM**CLEAR RECTANGLE**
950 PO = 53463
960 FOR X7 = 0 TO 34:POKE PO + X7,32:NEXT
X7
970 PO = PO + 64
980 IF PO< > 54231 GOTO 960
990 FOR X8 = 53335 TO 53345:POKE X7,32:
    NEXT X7
1000 G = 0:GOTO 310
The complete game of LIFE in BASIC for a UK101.
```


ACORN CLOCK

Simon Letts

Having seen the Kim Clock that was published in the February issue of CT and being in possession of another 6502 based system, namely the Acorn, I decided to make the necessary alterations. The following listing is the result of that effort. The program starts by clearing the display and loading the value 00 into the seconds counter. The monitor subroutine at FE88 is used to directly input the hours, minutes.

The main program is identical to the original except that it stores hours, minutes and seconds in 007C. $7 B$ and 7A respectively. An extra subroutine has been added to the display segment which uses monitor routines to display hours and minutes as well as seconds. This addition means that the original timing adjustment was not accurate enough and an extra delay loop was added with coarse adjustment at 006D and fine adjustment at 0072. These values should be altered until the clock is sufficiently accurate for your needs.

0020	A9	00		
0022	85	10		;Set up clock
0024	85	7 A		
0026	A2	7 B		
0028	20	88	FE	;Use monitor routine
002B	A9	1 F		;To load hrs, mins
002D	85	OE		
002F	20	62	00	;Start of main program
0032	A2	00		
0034	EO	02		
0036	DO	11		
0038	A9	23		

003A	D5	7 A		
003C	DO	19		
003E	A9	00		
0040	85	7 A		
0042	85	7 B		
0044	85	7 C		
0046	4 C	2 F	00	
0049	A9	59		
004B	D5	7 A		
OO4D	DO	08		
004F	A9	00		
0051	95	7 A		
0053	E8			
0054	4 C	34	00	
0057	18			
0058	F8			
0059	B5	7 A		
005B	69	01		
005D	95	7A		
005F	4 C	2 F	00	
0062	A2	7B		;Start of display
0064	20	64	FE	
0067	A5	7 A		
0069	20	60	FE	
006C	A2	2 C		;Course timing constant
O06E	20	OC	FE	
0071	AO	OA		;Fine timing constant
0073	88			
0074	DO	FD		
0076	CA			
0077	DO	F5		
0079	60			

Hex code for the Acorn clock. Main body of program is relocated from KIM clock program.

Digital information may sound good to a micro but it'll sound better to you when you feed it through this month's Microlink.

In this month's offering we describe an interface that will enable you to do several interesting and useful things with your micro, including playing tunes! The interface comprises two independent sections: a digital to analogue converter and an audio amplifier; the two may be easily combined.

Fig 1. The D to A circuit diagram

The Conversion System

This circuit consists of a single IC, see Fig.1, that accepts an eight bit input from the microprocessor system and produces an output voltage that is directly proportional to the binary value of that input byte. The layout of the circuit board is given in Fig.2. As can be seen there are three PCB plugs of the same type as used in the Thermoface unit, see July's CT, so you can re-use these if you wish. Remember to plug them the right way round though, as they carry power supply voltages.

Fig 2. The breadboard layout for both circuits

There are also two terminal pins on the board, 0 V and the IC output, You can connect a multimeter across these to monitor the IC during tests. Programs A and B both activate the eight outputs at Port B and by varying the byte value you can obtain different values on the meter. The specified output is 8.5 mV per unit input. Thus for an input of 255 (all high) we should obtain 2V17 ($255^{*} 0.0085$). In a later section of this series we will show you how to use this voltage to control things but for now we present.

The Power Section

The audio amplifier, see Fig. 3 , is based on a common audio IC which can be run from the supplies available. There are two large tabs on the chip, they should be connected to earth as shown or you won't get it to work!

Fig 3. The amplifier section circuit

PARTS LIST

Resistors, all $1 / 4 \mathrm{~W}$

R1	100 k
R2	1 R0
R3	56 R
Capacitors	
C1	220 n Polyester
C2,5	100 n Polyester
C3,8	100 u 16 V electrolytic
C4	470 u 16 V electrolytic
C6	330 p Polystyrene
C7	1500 p Polystyrene
C9	470 Polyester

[^1]
MICROLINK

Fig 4. Flowchart for the music program

The DIL switches are supplied to connect the amplifier directly to the converter or to a Flag output of the Mk 14. The handbook gives a "Music Box" program that runs through any Flag output. Owners of other systems may like to try programming their system to play tunes by following the scheme shown in Fig. 4 The tune is stored in memory as a series of single bytes, each one representing a note. The top three bits represent the duration and the bottom five give its pitch. To produce the required note the flag output of the system is turned on and off at the appropriate frequency. The
program needs a table to determine the delay needed to produce the required frequency. It also needs a second table to give the number of oscillations at that frequency to produce a note of "standard" length. This length is doubled or otherwise increased depending on the value found in the first three bits of the note code.

Once the program has been loaded it is fairly easy to transcribe a tune from a musical score to obtain the code sequence.

Fig 5. A "scribbled" waveform, see Table 4.

Generating Functions

Yet another use for the hardware is the "Function Generator" program from the Mk 14 manual, a version for Acorn is given in Program C. This uses the D to A converter connected to the audio amplifier. By sending a string of bytes a complex waveform may be produced, the pitch is set by the speed of the program but the sound quality can be changed by altering the byte values.

To calculate a series of values is not difficult. A few minutes with a set of tables, or calculator, will enable you to produce a sine wave. By using the formula $y=\sin (x)$ and taking say forty points we can arrive at a set of numbers. These have to be scaled so they are centered about 125 , it is quite suitable to multiply each value by 20 and add 125. A typical set of results is given in Table 1

More complex waveforms have more complex equations. Table 2 is the result of calculating $y=\sin (x)+\sin (2 x)+\sin (3 x)+\sin (4 x)+\sin (5 x)+$ $\sin (6 x)$. This gives a waveform that is the sum of the fundamental plus the first five harmonics, all having equal amplitude. This sounds different to the result of Table 1, and is also different to the waveform produced by Table 3. The values in Table 3 are the odd harmonics onlv.

A quick and easy way to make your own waveforms is to draw it on graph paper and simply read off the values. Fig. 5 and Table 4 are a typical example

Once the program has been loaded it is fairly easy to transcribe a tune from a musical score to obtain the code sequence.

FROM C TO C
TOTAL DASHED-LINE LOOP $=4+4+2+2+1+3+3+3=22 \mathrm{uS}$ TOTAL CONT-LINE LOOP $=4+4+2+2+0+4+2+4=22 u$ S EQUAL
Fig 6. The loop equalisation section of Program C

Micro-Computer Centre for the MIDLANDS

Nascom and Commodore Specialists

A full range of micro computers and peripherals are available, whether buying or browsing we can give helpful and friendly advice.

Commodore Business Systems are suitable for the professional office, the small business or the sole trader. We will be pleased to give advice and a demonstration.

Nascom 2 systems can be fully built and tested to order. We are sole distributors for the Micro Type case for Nascom 1 and 2, also stockists of the William Stuart colour graphics and full range of 'add-ons'

Business \& Leisure Micro Computers 16 The Square, Kenilworth, Warwickshire CV8 1EB. Tel: (0926) 512127

Program A. The test program for the D to A converter which can be used as a subroutine. In 6502 code for Acorn, relocatable.

F20	4
OF22	5
0723	C
$\mathrm{F}_{2} \mathrm{C}$	C4
F23	Ce
2 A	C.
2 C	C\%
$2 E$	2

S4P1 1010 A ance
Denine Pall 9 a, OUTPUT

Velue ourbut form Pont B

Program B. As program A but for the Mk 14.

Program C. Function generator program for Acorn.

7 D	80	83	86	89	$8 B$	8 D	8 F
90	91	91	91	90	8 F	8 D	8 B
89	86	83	80	7 D	7 A	77	74
71	6 F	6 D	6 B	6 A	69	69	69
6 A	6 B	6 D	6 F	71	74	77	7 A

Table 1. A sine wave, $y=\sin (x) 20+125$ converted to Hex.

$7 D$	89	D9	D1	AF	$8 B$	$7 C$	81
90	9 C	91	82	79	7 A	84	8 B
88	7 F	76	75	7 D	85	84	7 B
71	6 F	76	80	81	78	69	62
6 A	79	7 F	6 F	4 B	29	21	41

Table 2. A sine wave with all the harmonics

7 D	A9	B8	A5	89	7 D	86	91
90	84	7 D	84	90	91	86	7 D
89	A5	B8	A9	7 D	51	42	55
71	7 D	74	69	6 A	76	$7 D$	76
6 A	69	74	7 D	71	55	42	51

Table 3. Another sine v ave but with only the odd harmonics

$7 D$	81	84	86	87	88	88	87
78	78	81	79	81	88	89	88
77	75	$7 D$	82	82	77	$7 D$	82
83	84	83	$7 F$	$7 B$	79	79	79
$7 B$	$7 E$	$7 F$	80	$7 F$	$7 E$	$7 E$	$7 D$

Table 4. The values taken from the "scribbled" waveform of Fig. 5.

TECHNICAL BOOK SERVICE

What Is A Microproces5or?
2 Cassette tapes plus a 72 page book deal with many aspects of microprocessors including Binary and Hexadecimal counting, Programiming etc.

Adams, C. BEGINNERS GUIDE TO COMPUTERS AND MICROPROCESSORS WITH PROIECTS
16.05

Understanding building programming and operating your own microcomputer

AH, BASIC COMPUTER GAMES
$£ 5.40$
Albrecht, B. BASIC FOR HOME COMPUTERS. A self teaching guide

E5.45 Shows you how to read, write and understand basic programming language used in the new personal size microcomputers.

Albrecht B. BASIC. A self teaching guide (2nd edition)
E.5.45

Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special maths or science background.

Alcock, D. ILLUSTRATING BASIC
$£ 3.00$
This book presents a popular and widely available language called BASIC, and explains how to write simple programs.

Altman, 1. MICROPROCESSORS £10.80 Gives a general overview of the technology design ideas and explains practical applications.

Altman, L. APPLYING MICROPROCESSORS
[15.50
Follow-up volume which takes you into the second and third generation devices.

Aspinall, D. INTRO TO MICROPROCESSORS £6.55
Explains the characteristics of the component.
Barden, W. Z.80 MICROCOMPUTER HAND.
BOOK E7.75
Barden, W. HOW TO BUY AND USE MINICOMPUTERS AND MICROCOMPUTERS $£ 7.90$ Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.

Barden, W. HOW TO PROGRAM MICROCOM PUTERS
£7.25
This book explains assembly language program. ming of microcomputers based on the Intel 8080 , Motorola MC6800 and MOS Technology MCS6502 microprocessor

Bibbero, R.J. MICROPROCESSORS IN INSTRU MENTS AND CONTROL
\&. 12.60
Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.

Lancaster. D. TV TYPEWRITER COOKBOOK E7. 75
An in-depth coverage of TV typewriters (TVs) the only truly low cost microcomputer and small display interface.

Lancaster, D. CHEAP VIDEO COOKBOOK £6.50

Lesea, A. MICROPROCESSOR INTERFACING TECHNIQUES
$£ 8.70$
Leventhal. INTRO TO MICROPROCESSORS
E1 7.00
Lewis, T.G. MIND APPLIANCE HOME COMPU. TER APPLICATIONS

Hilburn, J.L. MICROCOMPUTERS, MICROPROCESSORS, HARDWARE, SOFTWARE AND APPLICATIONS
£.17.40
Complete and practical introduction to the design. programming operation, uses and maintenance of
modern microprocessors, their integfated circuits and other components

Klingman, E. MICROPROCESSOR SYSTEMS DESIGN £16.95 Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation dewices. No prior knowledge of microprocessars or micreelectronics is required for the reader.

Kemeny, J.G. BASIC PROGRAMMING
〔6.70 A basic text.

Korn, G.A. MICROPROCESSOR AND SMALL DIGITAL COMPUTER SYSTEMS FOR ENGIN. EERS AND SCIENTISTS £19.45 This book covers the types, languages, design software and applications of microprocessors.

Duncan. MICROPROCESSOR PROGRAMMING AND SOFTWARE DEVELOPMENT £ $1+15$

Rao, G.U. MICROPROCESSOR AND MICROPROCESSOR SYSTEMS £20.75
A completely up-to-date report on the state-of-the. art of micropracessors and microcomputers wertten by one of the leading experts.
Rony, P.H. THE 8080A BUGBOOK: Micfocomputer Interfacing \& Progranming 88.35
The principles, concepts and applications of an 8 -bit microcomputer based on the 8080 microprocessor CPU chip. The emphasis is on a computer as a controller.
Scelbi. 6800 SOFTWARE GOURMET GUIDE AND COOKBOOK £8.90

Scelbi. 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK 88.90

Scelbi. UNDERSTANDING Mir ROCOMPUTERS £8. 75
Gives the fundamental concepts of virtually all microcomputers.

Spencer, GAME PLAYING WITH BASIC E4.85
Schoman, K. THE BASIC WORKBOOK £3.85 Creative techniques for beginning programmers.

Sirion, D. BASIC FROM THE GROUND UP $£ 6.20$
Soucek, B. MICROPROCESSORS AND MICRO. COMPUTERS
£19.40
Here is a description of the applications programming and interfacing techniques common to all microprocessors.

Spracklen, D. SARGON
£9.90
A computer chess program in $Z-80$ assembly language.

Titus. MICROCOMPUTER ANALOGUE CON. VERTER
$£ 7.60$
Titus. $8080 / 8085$ SOFTWARE DESIGN 17.60

Tracton. 57 PRACTICAL PROGRAMS \& GAMES IN BASIC
Programs for everything from Space war games to Blackjack.

Waite, M. MICROCOMPUTER PRIMER
$£ 6.40$
Waite, YOUR OWN COMPUTER
£1. 60
Introduces the beginner to the basic ptinciples of the microcomputer
Libes. S. SMALL COMPUTER SYSTEMS HAND.
Note that all prices include postage and packing.
Please make cheques, etc., payable to Computing
Today Book Service (Payment in U.K. currency
only please) and send to:
Computing Today Book Service,
145 , Charing Cross Road,
London WC2H OEE.
Prices may be subject to change without notice.

BOOK

$£ 5.90$
The Primer written for those new to the field of personal home computers.

Lippiatt. ARCHITECTURE OF SMALL COM.
PUTER SYSTEMS
£4.50
Moody, R. FIRST BOOK OF MICROCOMPUTERS
£3.85 (The home computer owners best friend).

McGlynn, D.R. MICROPROCESSORS
Technology, Architecture \& Applications
$£ 9.20$
This introduction to the computer-on-a-chip provides a clear explanation of the important new device.

MeMurran, PROGRAMMING MICROPROCESSORS

E5.50
A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating point computations, data exchange with peripheral devices, computers and other programming aids

Manro, interactive computing with BASIC
£3.65
Nagin, P. BASIC WITH STYLE
£4.15
Programming Proverbs. Principles of good programming with numerous examples to improve programming style and producing.

Ogdin. SOFTWARE DESIGN FOR MICROCOMPUTERS
£7.20
Ogdin. MICROCOMPUTER DESIGN £7.25
Peatman. MICROCOMPUTER BASE DESIGN
£5.70
Peckham. HANDS ON BASIC WITH A PET $£ 9.00$ Peckham. BASIC - A HANDS ON METHOD 66.95

Bursky, D. MICROCOMPUTER BOARD DATA MANUAL

E6.00
Coan, I.S. BASIC BASIC
E7.50
An introduction to computer programming in BASIC language.

Coan, 1.5. ADV ANCED BASIC
E7.30 Applications and problems
Ditlea. A SIMPLE GUIDE TO HOME COMPUTERS
£. 4.10
Freiberger, S. CONSUMERS GUIDE TO PER. SONAL COMPUTING AND MICROCOMPUTERS
$£ 5.75$
Gilmore, C.M. BEGINNERS GUIDE TO MICRO. PROCESSORS
£4.90
Grossworth. BEGINNERS GUIDE TO HOME COMPUTERS
£4.50
Gosling, R.E. BEGINNING BASIC E3.45 Introduces BASIC to first time users.
Graham, N. MICROPROCESSOR PROGRAM. MING FOR COMPUTER HOBBYISTS £7.15

Hartley. INTRODUCTION TO BASIC £2.80
Heiserman, D.L. MINIPROCESSORS FROM CALCULATORS TO COMPUTERS ${ }_{£ \uparrow .95}$
Ward. MICROPROCESSOR/MICROPROGRAMMING HANDBOOK
$£ 6.00$
Authoritative practical guide to microprocessor construction programming and applications.

Veronis. MICROPROCESSOR
$£ 13.00$
Zaks, R. INTRODUCTION TO PERSONAL AND BUSINESS COMPUTING
$£ 8.60$
Zaks, R. MICROPROCESSORS FROM CHIPS TO SYSTEMS
£8.30

Computerise your day-to-day happenings with this versatile piece of BASIC software.

Here is yet another morsel of food to keep your 'Housetrained PET' from starving. Doubtless there are many readers who will attempt a diary program for themselves as one of their first tasks. We would not dare boast that this is the best, but hope that everyone will find it some use, either in whole or in part.

The listing is in PET BASIC. The only criterion for transferring to other dialects is the need for good string handling facilities, you don't even need floating point arithmetic.

Fresh Dates

The screen will display nine catagories of events or engagements and will be prompting for your choice. The category names are stored as DATA stagements in lines 60050-60070. These can be set-up to the individuals requirements with the following limitations:-
a) Holidays must be stored as the first statement. The reason for this is that there is a holiday block routine that has been written using the first position. Details of this are given later.
b) As the program stores the event number and not the event name when producing a data tape, events cannot be moved from one position to another unless there are no entries existing under the new position.
Once you have decided on your entry, the program will ask for a date. A check is then made to see if there are any other entries on that date. If an entry exists, it is listed and a chance is given to abort from the operation. If you carry on, or there is no other entry, the program will then ask for a message. Don't bother inserting the event name, for, as mentioned earlier, the program will have already sorted the event number and will convert that back to the text when displaying on the screen. The event number is stored as the first position in the message text. For this reason, it is not possible to put figures at the beginning of your message. If the time of (say) a dentist visit is required then put it as follows:-

Check-up 3.30 not 3.30 Check-up

Once your message has been entered two further checks are made to ensure there is enough memory and there is a string available in memory. A conversion is then made of your date. This is on a day numbering basis where 1st January $1980=1$. This routine does not take into account 29th February, in fact it assumes that every year is a leap year. It would be fairly easy to rewrite this part to take leap years into account, but the extra memory used in comparison to the facilities achieved did not make it seem worthwile.

After your message has been placed in memory, a message is displayed as to the amount of memory and entry positions left available. The two figures are not inter-related. It is quite possible to have room for 150 entries with only 60 bytes free. While this message is
being displayed a bubble sort routine is entered to put all entries into a chronological order. The reason this is done is to give any listings an orderly fashion when displayed on the screen.

Cancelling A Date

There is nothing special about this routine. It asks for the date you are interested in and then lists all events stored under that date. An option is given to the user to delete or save. This is repeated until all entries under that particular date have been exhausted.

Forward Planning

This facility gives a printout of all events for the next seven days. If the user wishes to alter this to (say) fourteen days then it would be a simple matter to alter the program as follows:-
3000..........D\%(J)>D2 + 15 THEN 3100

Holidays

A very time consuming part of any diary upkeep is the entry of holidays. Instead of having to input the holiday day by day, this program will take them "en bloc". A start date and finish date are requested. The program goes through the usual routines to check for double entries and sufficient space. If other entries are found that the user wishes to delete, it is quicker to leave them until the holidays have been entered, and then go back to the delete routine.

Listing Events

How many times have you wondered "when is so-andso's wedding anniversary". If this is your problem, then select this routine and hit the event number corresponding to ANNIVERSARY, the program will then give you a full list of anniversaries (or whatever event you are interested in). If you require a list of all events under a specific date then use the cancellation routine to give you the list.

Data Tapes

The data tape production routine has a motor switching operation incorporated into it. As there is no need to keep the previously saved data, the tape should be rewound to its start position prior to any tape update.

Running The Program

The usual password has been incorporated to help with privacy. Once this has been cleared the program will want to know whether there is data already existing on tape. If data is on tape the program will prompt the user to enter the tape. After the data has been read in a message will be displayed as to when the tape was last accessed. The program will then continue to ascertain today's date. The program will then give a list of all events that have occured since the last tape dump. You are given a choice to delete or put back into memory for next year (by adding 366 to the day index figure).

The Listing

The listing, as mentioned earlier, is in PET BASIC. Here is the shorthand used:-
[CLR]
[PASSWORD]
[CD]
[CU]
[CL]
[CR]
[REV]
[REV OFF]

> Clear screen routine Your particular password Cursor down Cursor up Cursor left Cursor right Reverse video on Reverse video off

Screen Display

As most people will have their own ideas on how the information should be displayed, not much thought has been given to the format in this program. If you alter the program to allow a fourteen day forward plan then some sort of routine will have to be incorporated to interrupt the scrolling action of the screen. There are two popular methods:-

1. Scan the keyboard and, if a key has been pressed, stop printing until another key is touched
2. Count the number of lines and (say) stop printing at 20 lines and use the subroutine at line 750 as a waiting loop.

10 DIM D\%(255),D\$(255),M\$(12)
20 N\$ = " DIARY DATA": POKE59468,14: $Z=32500: W=255: X=366$
30 FOR J=0 TO W: D\%(J) = Z: NEXT
40 INPUT" [CLR]PASSWORD";A\$: IF A\$<> "[PASSWORD]" THEN NEW
50 INPUT " [CLR]Is this a first run"; $\mathrm{A} \$$
60 IF LEFT $(\mathrm{A} \$, 1)=" Y$ " THEN 140
70 PRINT " [2 CD][REV]PLEASE INSERT "N\$" TAPE AND": PRINT" [CD][REV]FULLY REWIND": GOSUB 750
80 OPEN 1,1,0,N\$: PRINT N\$ " FILE FOUND
90 FOR I $=0$ TO W: INPUT \# 1,A: IF $A=-99$ THEN 120
100 D\%(I) = A: INPUT \# 1,D\$(I): NEXT
120 INPUT\#1,D2: CLOSE 1
140 FOR $J=1$ TO 12: READ M: NEXT
150 FOR $\mathrm{J}=1$ TO 12: READ M\$(J): NEXT
160 FOR $J=1$ TO 9: READ E\$(J): NEXT: RESTORE
170 A = D2: PRINT " [CD]File last accessed on [CD]" : GOSUB 8400
180 GOSUB 8000: D2 $=\mathrm{A}: C=0$
190 PRINT " [2 CD] $]$ am looking for obsolete entries
200 FOR $\mathrm{J}=0$ TO W: IF D\%(J) >D 2 THEN 250
210 A = D\%(J): GOSUB 8400: GOSUB 8310
220 PRINT "[2 CD]Do you want this kept for next year?
230 GOSUB 800: IF R $\$=$ " Y " THEN D $\%(\mathrm{~J})=$ D\%(J) + X: NEXT: GOTO 250
$240 \mathrm{C}=1: \mathrm{D} \%(\mathrm{~J})=\mathrm{Z}: \mathrm{D} \$(\mathrm{~J})={ }^{\prime \prime}$ ": NEXT
250 IF C $=1$ THEN GOSUB 8200
260 PRINT " [CLR]" TAB(13)" PERSONAL DIARY
270 PRINT "TAB(19)" [CD]by

```
    280 PRINT " TAB(10)" [CD]Elaine Douse
    290 PRINT "TAB(10)"[3 CD]1. ADD NEW
        ENTRIES
    300 PRINT "TAB(10)"[CD]2. DELETE ENTRIES
    310 PRINT "TAB(10)"[CD]3. 7 DAY FORWARD
        PLAN
320 PRINT " TAB(10)" [CD]4. ADD HOLIDAY
    BLOCKS
330 PRINT " TAB(10)" [CD]5. LIST (by event)
350 PRINT "TAB(10)"[CD]6. PRODUCE DATA
    TAPE
    360 GOSUB 8600
    380 IF C > 6 OR C < 1 OR C < > INT(C) THEN
        260
    400 ON C GOTO 1000,2000,3000,4000,
        5000,7000
    750 PRINT " [CD][REV]PRESS ANY KEY TO
        CONTINUE": GOTO 810
    800 PRINT " [CD][REV]PRESS 'Y' OR 'N'
    801 GOSUB 810: IF R$<>"Y" AND R$ <>
        "N" THEN }80
    802 RETURN
    810 GET R$: IF R$ = " " THEN }81
    820 RETURN
1000 FOR I=O TO W: IF D%(I)= Z THEN }104
1030 NEXT: GOTO }871
1040 PRINT "[CLR]" ;: GOSUB 8100: GOSUB
        8000
    10%0 FOR J=0 TO W: IF D%(J) <A THEN NEXT
1080 IF D%(J) > A THEN }150
1090 GOSUB 8300
1130 PRINT "[2 CD]Do you wish to carry on?
1140 GOSUB 800: IF R $ = "N" THEN 260
1150 NEXT
1500 D$(I)=STR$(C):D$(I)=RIGHT$(D$(I),1):
    D%(I)=A
1520 GOSUB 8700: D$(I)=D$(I)+A$
1530 PRINT "[2 CD][REV]NOTE[OFF]You have
        "FRE(O)" BYTES FREE
1540 PRINT " and room for" W-(I)" entries" :
    PRINT" Any more ?
1560 GOSUB 800: IF R$ = "Y" THEN }100
1570 GOSUB 8200: GOTO 260
2000 PRINT "[CLR]": C=0: GOSUB 3000
2020 FOR I = O TO W: IF D%(I) < > A THEN
    NEXT: GOTO 2070
2030 J = I: GOSUB 8300: C=1
2040 PRINT "[CD]Do you want this kept ?
2050 GOSUB 800: IF R$ = "Y" THEN NEXT:
        GOTO 2070
2055 FOR J=I TO W-1: D%(J)=D%(J+1):
    D$(J) = D$(J + 1): NEXT
2060 D%(W) = Z: D$(W)=" " : NEXT
2070 IF C=1 THEN 2100
2080 PRINT "Sorry no entries found for that
        date": GOTO 2110
2100 PRINT "Sorry no more entries found
2110 PRINT "Have you any more deletions
2120 GOSUB 800: IF R$ = "N" THEN }26
2130 GOTO 2000
```

3000 PRINT " [CLR]" : FOR J=0 TO W: IF D\% (J) > D2 AND D\%(J) < D2 + 8 THEN 3100
3010 NEXT: GOSUB 750: GOTO 260
$3100 \mathrm{~A}=\mathrm{D} \%(\mathrm{~J})$: GOSUB 8400: GOSUB 310: NEXT
4000 PRINT " [CLR]This is for block
holidays": PRINT [2 CD][REV]START DATE": GOSUB 8000
4020 S = A:PRINT " [2 CD][REV]FINISH DATE":
GOSUB 8000: $\mathrm{F}=\mathrm{A}$
4040 FOR I $=0$ TO W: IF $\mathrm{D} \%(\mathrm{I})>=$ S AND $D \%(I)=<F$ THEN $A=D \%(I):$ GOSUB 8400: $J=I$:GOSUB 8300
4060 IF D $\%(\mathrm{I})=$ Z THEN 4080
4070 NEXT: GOTO 8710
4080 IF W - I $\angle \mathrm{F}$ - S THEN 8710
4083 GOSUB 8700: $A \$=" 1 "+A \$$
4085 FOR $\mathrm{J}=\mathrm{S}$ TO F: GOSUB 8705: $\mathrm{D} \%(\mathrm{I})=\mathrm{J}$: $D \$(I)=A \$: I=I+1$: NEXT: GOSUB 8200: GOTO 260
5000 PRINT " [CLR]" ;: GOSUB 8100:PRINT: FOR $J=0$ TO W: $\operatorname{IF} \operatorname{VAL}(D \$(J))=C$ THEN 5100
5050 NEXT: PRINT "[CD]Search is complete" : GOSUB 750: GOTO 260
$5100 \mathrm{~A}=\mathrm{D} \%(\mathrm{~J}):$ GOSUB 8400: GOSUB 8320: GOTO 5050
7000 PRINT " [CLR]FULLY REWIND DATA

Happy Memories

4116	$200 n s$	$£ 3.95$
2114	$200 n s$	$£ 3.95$
2708	$450 n s$	$\mathbf{£ 4 . 9 5}$
4116	$150 n s$	$£ 5.50$
2114	$450 n s$	$£ 3.45$
2716	5 volt	$\mathbf{£ 1 3 . 5 0}$

Memorex mini discs soft sectored with FREE library case $£ 19.95$ per ten

SALE

We're moving shortly to new premises and don't want to carry much. Bargains for all.
All prices include VAT. 30p postage on orders below $£ 10$. Access and Barclaycard. All orders to:

DEPT CT

> 19 Bevois Valley Road, Southampton, Hants. SO2 0JP Tel: (0703) 39267

TAPE": GOSUB 750: POKE 244,2: POKE $243,122: A=1$
7040 OPEN 1,1,A,N\$: FORI=0 TO W: IF D\%(I) = ZT THEN 7100
7070 PRINT \# 1,D\% (I): GOSUB 7500: PRINT\# 1, D\$(I): GOSUB 7500
7100 NEXT
7110 PRINT\# 1, - 99: GOSUB 7500: PRINT \# 1, D2: CLOSE1
$7125 \mathrm{~A}=\mathrm{A}+1$; IF $\mathrm{A}=2$ THEN 7040
7130 PRINT "FINISHED":END
7500 POKE 59411,53:RETURN
8000 A $=0:$ PRINT" [2 CD]Please enter day, month, year (in figures)
8010 INPUT D,M,Y: IF $Y<100$ THEN $Y=Y+1900$
8030 FOR $K=1$ TO 12: IF $K=M$ THEN 8050
8040 READ B: $A=A+B:$ NEXT
8050 RESTORE: $A=A+D\left((Y-1980)^{*} X\right)$: RETURN
8100 FOR K = 1 TO 9: PRINT TAB(12)K;E\$(K): NEXT: GOTO 8600
8200 PRINT " [CD]I AM SORTING
8205 FOR $\mathrm{J}=0$ TO $\mathrm{I}: \mathrm{K}=\mathrm{J}+1$:FOR $L=1$ TO K STEP-1
8210 IF D $\%(\mathrm{~L})>=\mathrm{D} \%(\mathrm{~J})$ THEN 8230
$8220 \mathrm{~A}=\mathrm{D} \%(\mathrm{~L}): \mathrm{A} \$=\mathrm{D} \$(\mathrm{~L}): \mathrm{D} \%(\mathrm{~L})=\mathrm{D} \%(\mathrm{~J}):$ $D \$(\mathrm{~L})=\mathrm{D} \$(\mathrm{~J}): D \%(\mathrm{~J})=A: D \$(\mathrm{~J})=A \$$
8230 NEXT:NEXT:RETURN
8300 PRINT " [CD]I have found the following for that date
8310 PRINT " [CD]" E\$(VAL(D\$(J)))
8320 PRINT RIGHT \$(D \$(J),LEN(D\$(J)) - 1): RETURN
$8400 \mathrm{Y}=0$
8410 IF $\mathrm{A}<367$ THEN $\mathrm{M}=1$: GOTO 8430
$8420 A=A-366: Y=Y+1: G O T O 8410$
8430 READ B: IF $A>B$ THEN $A=A-B$:
$M=M+1$: GOTO 8430
8440 RESTORE: $\mathrm{D}=\mathrm{A}$: GOSUB 8500: RETURN
8500 PRINT D;M\$(M);Y:RETURN
8600 INPUT " [2 CD]Which category do you require" $\mathrm{C}:$ RETURN
8700 INPUT "[CD]The message please";A\$
$8705 \operatorname{IF} \operatorname{FRE}(0)>\operatorname{LEN}(\mathrm{A} \$)+30$ THEN RETURN
8710 PRINT " [2 CD]SORRY NO ROOM LEFT":GOSUB 8800: GOTO 260
8800 FOR I = 1 TO 2500:NEXT:RETURN
60000 REM DAYS IN THE MONTH
60010 DATA $31,29,31,30,31,30,31,31,30,31$, 30,31
60020 REM MONTH NAMES
60030 DATA JANUARY,FEBRUARY,MARCH, APRIL,MAY, JUNE,JULY,AUGUST, SEPTEMBER
60040 DATA OCTOBER,NOVEMBER,DECEMBER
60050 REM EVENT NAMES
60060 DATA HOLIDAY, USER1,USER2,USER3, USER4, USER5,USER6,USER7,USER8
BASIC listing for the program, see text for BASIC alterations.

Sole Importers

LOWE
 ELECTRONICS

Bentley Bridge, Chesterfield Road, Matlock, Derbyshire. DE4 5LE.
TRADE ENQUIRIES WELCOME

In the final episode we bring you the program that the whole series has been working towards.

And so to the last part of the series. The ground that has been covered over the past four months has been the preparation for understanding the specimen program listed here. However, a few sentences are still required to complete the picture, and one topic that should be given space is that of Structured Programming.

The Concept

If writing a program can be likened to an author writing a book then structured programming can be likened to the grammar of that prose. The better the grammar, the better the book to read. With programming, the tidier a program looks, and the tighter its construction, the better structured it becomes.

In many ways, I believe, the structuring of programs is very much over-emphasised. It is far more important to the owner of a computer that a program functions correctly rather than whether it looks acceptable to an professional.

The Listing

To describe a listing it is necessary for the first time to specify the CPU and the System Monitor that is being used, as the final listing must obviously vary from CPU to CPU.

The listing shown is for a Zilog Z80 CPU controlled by the NASCOM T2 or T4 monitor. Those with other systems that use various other types of CPU's should not now 'switch off' but accept the challenge to see how it's been done and then write their own listing. A detailed explanation of each instruction has been given and the reader is advised to carefully work through the program line by line analysing each event. If a NASCOM 1 is available then the program can be entered and run, or single stepped through as required.

Debugging

One lesson the programmer quickly learns is that his creations will seldom work first time. The process of investigation and correction is know as 'DEBUGGING', and can often take many hours to complete. If, as with the 'Gregorian Calendar', the result is dependent solely on the input (of which there are x^{n} possibilities) then sooner or later someone will feed in an input not otherwise considered and a new 'bug' will emerge to the great satisfaction of the operator and the indignation of the writer. The 'debugging' will then begin again.

Use of the monitor 'Breakpoint' command is essential and this, together with the 'single stepping' feature, provides the most valuable tools at your disposal.

Documentation

With the program written, entered, debugged and supposedly finished, the temptation is to file it on magnetic tape and move on to pastures new. To document might seem pointless, not to say time consuming,
but it is fatal to omit this stage as sometime in the future a procedure or subroutine worked out for a particular program may be just the thing for a new application, and it is surprising how quickly one forgets how a program works.

Epilogue

Now that this series is complete I hope that it has given many more computer owners the urge to experiment in machine code programming. My only hope is that your efforts will be made available to other enthusiasts as there is much that we can teach each other, and if you feel that you have developed a program that may be of interest to others then send it to us for consideration in the 'SOFTSPOT' column.

0000	EF	1 E	00			Clear Screen
0003	21	D9	OB		HL = OBD9	Set cursor location
0006	22	18	OC		(0C18. HLI	100809
0006	CD	84	OE		Call TITLE*	Print title
ODOC	3 E	01		INIT 1	$A=01$	Set the 1st March
ODOE	32	OF	OE		IOEOFI. A	1756 dav shift reference
INPUT						
OD11	CD	CA	OE		Call - INST*	Print Instructions
OD14	CD	3E	00	1/P	Call ${ }^{\text {CHiN }}$	Monitor INPUT routine.
0017	FE	20			$C P=$ 'SPACE	
OD19	20	05			JRNZ NL	Jump if not space
0018	2 A	18	OC	SPACE	HL. 10C 181	Put cursor location in HL
ODIE	23				INC HL	Save start of Yeat CRT
ODIF	E5				PUSH HL	address location
0020	FE	1 F		NiL	CP = "NEW LINE"	is entry complete
0022	28	05			JRZ - CUR ${ }^{-1}$	Jump if Yes
OD24	CD	3B	01		Call ${ }^{\text {- CRT* }}$	Monitor output routine
0027	18	EB			JR INPUT	Do for next character
0029	2 A	18	OC	CUR	HL. 10C 181	Erase cursor from
OD2C	36	20			(HL), 20 Hex	CRT display
COPY						
OD2E	01	13	00		$B C=13$	No. of chars to be copied
OD31	11	D9	OB		$D E=08 D 9$	Destination Address
0034	21	A3	OB		HL = OBA3	Start address
0037	ED	B0			LDIR	Copy Month and Year to top CRT line

DECIMAL HEX

OD3A	21	00	00		$\mathrm{HL}=0$	Set counter to 0
003D	01	E8	03		$\mathrm{BC}=03 \mathrm{E} 8$	Set $B C=-1.000$ Decimal ${ }^{\text {a }}$
OD40	CD	11	OE		Call "Sum 1"	Add up Milleniums
0043	01	64	00		$\mathrm{BC}+0064$	Set BC $=$ " 100 Decimal"
0046	CD	10	OE		Call ${ }^{\text {- Sum }}$	Add Centuries
OD49	OE	OA			$C=O A$	Set $B C=-10$ Decimal"
OD4B	CD	10	OE		Call ${ }^{\text {S Sum }}$	Add Decades
OD4E	OE	01			$\mathrm{C}=01$	Set $B C=1$
OD50	CD	10	OE		Call "Sum"	Add Years
BASE YEAR						
0053	01	DC	06		$B C=06 D C$	1756 Decimal
OD56	ED	42			Sub HL.SC	Get Year difference
0058	E5				PUSH HL.	Save difference
CENTURY ADJUST						
0059	1 E	03			$E=3$	Set cent counter
0058	01	2 C	00		$B C=2 C$	$B C=44$ decimal
ODSE	ED	42		C 1	Sub HL.DC	Dee Count to 1800 Dec
0080	38	OE			JRC - CyCles*	Jump if $1756-1779$
0062	OE	64			C. 64	$B C=100$ decimal
0064	10				Dec E	DEC. cent. counter
0065	28	05			JR2	If zero the cent. is leap vear
0067	CD	30	OE		Call DECDY	If not decrement one day to combensate
OD6A	18	F2			JR ${ }^{-C 1 *}$	Do for next century
O06C	1 E	04			$E=4$	Reset Counte*
OOEE	18	EE			JR ${ }^{-C 1 *}$	Dofor next century
CYCLES						
0070	E				POP HL	Recover vear difference
0071	A 7				AND. A.A	Reset Carry flag if set
0072	OE	1 C			$C=1 C$	Set $B C=28$
0074	ED	42		Cri	Sub HL, BC	Reduce difference by 28 vears
0076	28	26			JRZ SET LPYR*	Exactly 28 years ditt. Zero
0078	30	FA			JRNC " CY1-	Do again if result pas
OD7A	09				Add HL, BC	It neg. odd for remainder
LEAP YEARS						
0078	70				A. L	Put remainder in A
OD7C	D6	04		LPY 1	Sub O.	Subtract leap vears
OD7E	28	OA			JRZ -LP2*	Jump it Lead vear
OD80	38	11			JRC -LP3	
OD82	6 F				L. A	Store new Year difference
0083	06	05			$B=05$	Set dav advance to 5

MACHINE CODE

PROGRAMMERS TOOLKIT

SUPPLIED IN 2708 EPROMS FOR NASCOM ROM BASIC GIVES YOUR NASCOM THE FOLLOWING COMMANDS

AUTO	APND
RENU	HEX

DELE DUMP

FIND
HELP STEP

Qdd-ons

PRINTER HANDSHAKE

Only $£ 42.00$

OFF INKEY KEY BOARD REPEAT

CONTROL KEY PAD
HEX KEY PAD
PORT PROBE
BUILT SYSTEMS
S.A.E. FOR DETAILS

Subscriptions

Are you getting it regularly? Computing Today we mean, as if you have other interests! The best (some people say the only) way to achieve a regular supply of the best magazine in the field is to subscribe. Our sales are increasing so rapidly that queues form every month at newsagents all round the country, some people are even waiting all night just to be first in the line.

However, the wise reader who has invested his money in a years subscription to CT is sitting at home reading it, and thus avoiding the long wait at the bookstand.
Come on, do yourselves a favour, fill in the coupon and send it with a cheque or postal order for $£ 10$ ($£ 11$ if you live overseas) and have your copy delivered each month.

Send the coupon and your money to:
CT Subscriptions Department,
MAP Ltd.,
P.O. Box 35,

Bridge Street,
Hemel Hempstead,
Herts.

String your programs together with our new language.

This article describes a programming language specifically designed to facilitate string handling in certain applications called CONLAN (after CONversational LANguage). In effect it places at the disposal of the programmer a number of useful subroutines which are accessed by means of symbolic commands.

Language Description

This description may be applied to any interpretive high level language. CONLAN could be described as 'super-high-level' or 'second generation' as it is written in BASIC. As a consequence its operation may easily be understood by reference to the program listing of the Interpreter and it may be extended or tailored to suit the needs of the individual user. Further, its use is not limited to any particular processor and it may be implemented on any machine having the normal string handling commands of an 8 K or larger BASIC.

The form taken by the CONLAN statements, and their syntax, is very similar to that of Pilot and it can be considered as a 'Tiny' version of that language. Possible applications of the Interpreter include Computer Assisted Learning (CAL) and games of a conversational nature.

Implementation And Use

A typical CAL program, having presented some instructional text, poses a question, accepts a response and then branches to a further question or statement depending on whether or not the response was correct. The correct answer may well be embedded in a sentence and there may be more than one form of acceptable response. For instance, in a simple arithmetic tuition program, the correct answer to the question 'If you have three apples and I take one, how many are left?' could take the following forms:
a) TWO
b) 2 APPLES
c) TWO ARE LEFT
d) I WOULD HAVE 2 APPLES

These are just some of the forms the correct answer may take. To write a program which can detect the correct answer in all the most likely forms is possible directly in BASIC, but can easily lead to complex, convoluted programs that are difficult to debug or modify. CONLAN offers a means of writing these sort of programs which can be used even by relatively inexperienced programmers. It is desirable that the computer should have at least 8 K user RAM as the Interpreter occupies about 2K (not including arrays).

The available program commands are as follows:-
T/ - Type. Prints whatever appears following
the ' $\%$ '. This may be literal text or may contain string variables, which are denoted by the suffix '\$'.

[^2]| A/ | Accept input. If the command is followed by a variable name, the input will be stored under that name and may subsequently be printed in T / statements. e.g. A/NAME |
| :---: | :---: |
| M/ | Match. Checks the last input to see of it contains any of the words following this command. Alternatives are seperated by a semicolon.
 e.g. M/TWO; $2 ; \mathrm{TO} ; \mathrm{TOO}$ |
| J/ - | Jump. Transfers program execution to the statement preceded by the label following the command.
 e.g. J/START |
| R/ | RETURN. Returns program execution to the line following the last jump. J/ and R/ together permit one level of subroutine |
| E - | Exit. Terminate program. |

All of the above commands except E may be modified by the addition of the conditioners Y and N . Their effect is to make the execution of the command conditional on the outcome of the last match statement. For example, JN/START will only transfer program execution to the line labelled START if the result of the last match was negative. If positive, the command is ignored. TY/THAT IS CORRECT will only print 'THAT is CORRECT' if the result of the last match is positive.

An Example

The following program is trivial but will serve to illustrate how the commands are exployed:

```
START*T/HELLO WHATS YOUR NAME?
A/NAME$
T/WELL NAME$ HOW ARE YOU?
LOOP*A/
M/AWFUL;LOUSY;NOT
TY/SORRY TO HEAR THAT
JY/END
M/GOOD;WELL;FINE
TN/I DIDNT UNDERSTAND THAT
TN/COULD YOU PUT IT ANOTHER WAY?
JN/LOOP
T/IM GLAD TO HEAR THAT NAME$
END*E
```

The Following should be noted:
a) Line numbering is automatic when the program is typed in. Jump destinations are however labels, which may be assigned as required.
b) Where a label preceeds a command, it must be followed by a '*' to seperate it from the command.
c) All commands except ' E ' have the suffix ' $/$ '
d) Commas and colons cannot be used in T/ statements or included in a typed in response. They would result in any text following them being ignored and an 'EXTRA IGNORED' message.

System Commands

The available control commands are as follows:-

Allows a program to be typed in. First, the computer will ask for INCREMENT? This sets the increment between line numbers, which, as mentioned above, appear automatically and do not have to be typed. It will normally be set to one (see later). The first line number to appear will be 1 if the increment is 1,2 if the increment is 2 and so on. A program statement may then be typed in and terminated with the carriage return. The next line number will appear and the next line can be typed. This will continue until an ' E ' is typed denoting the end of the program. The Interpreter will now be ready to accept another control command.
LIST - Allows the program to be listed. First asks WHICH LINES? The numbers of the first and last lines to be displayed should be typed in, seperated by a comma. e.g. 1,10 will list lines one to ten inclusive. EDIT - Allows a line or lines to be changed. Also allows extra lines to be inserted if the increment was initially set to two or more. First asks FROM WHICH LINE? Once a line number has been entered it will be displayed on the next line and the new statement can be typed in. Following carriage return, the next line number is displayed regardless of what the increment may have previously been set to. A further line may now be typed in. Alternatively, if a control command is typed and entered, the Interpreter exits edit mode and the new control command will be obeyed
Executes the program until an ' E ' command is reached. The message 'END OF PROGRAM' is then displayed and the interpreter is ready to accept a new control command.

Interpreted Interpreter

The CONLAN Interpreter uses an array, C\$, to store the lines of the program. The dimension of this array is set to 200 in the listing as shown and allows up to 200 lines of program if the increment is set to one, 100 if set to two, 40 if set to five and so one. All 200 lines are available via the EDIT command. On a computer with less than 8K of RAM it may be desirable to dimension C\$ at less than 200 in order to avoid running out of string array space. Arrays $1 \$$ and J are set to permit up to 20 labels. Arrays $\$ \$$ and NS permit up to 20 string variables if dimensioned as shown. The dimensions of all these arrarys may be varied to suit individual requirements, within the limits imposed by available RAM.

Permanent storage of the CONLAN programs is possible if your computer has the facility to save arrays on tape or disc. All arrays exccept $A \$$ and $B \$$, plus the variables K and S can be saved. Ideally the control command repertoire of the Interpreter should be extended to include save and load routines appropriate to your computer.

The program was written for use on an ITT 2020, but the BASIC has been kept as standard as possible so that there should be little problem in running the Interpreter on other machines. The only expression which may possibly be unfamiliar is CLS. This is used to clear the VDU screen at several points in the listing. Any other expression or routine which performs this function and which is appropriate to your machine may be substituted. In order to optimise the speed of operation of the Interpreter, an input is broken down into seperate words by subroutine 1000 and stored in string array $B \$$, where they may subsequently be compared with words contained in match statements. Note that this means that a match statement cannot be used to search for a phrase directly, only single words. Consecutive match statements must be employed if a phrase is to be sought. For example to detect whether an input contains the phrase 'TWO APPLES' it is necessary to search seperately for 'TWO' and 'APPLES', eg: $\quad A$

> M/TWO
> MY/APPLES
> TY/THATS RICHT

As it stands, the Interpreter does not permit any numerical computation. The number of available commands has deliberately been limited in order to minimise the memory requirement. If you have a requirement for numerical computation and have enough RAM, it would be possible either to add simple arithmetic commands and permit numerical variables or to allow BASIC routines to be called from CONLAN in a manner analogues to using a USR or CALL command to access machine code via BASIC.

Notes On The Interpreter

Use of arrays and variables:-

- temporary store for string components separated by subroutine 1000
B\$ - used to store separate words of an input string
C\$ - lines of Conlan program
J - line numbers where labels occur
j\$
S\$
N\$
B\$
- labels
- string variables
- names assigned to string variables
- seperator used in subroutine 1000
$\mathrm{N} \quad$ - line number during 'write' routine
P - program counter during 'run'
TP - line number where last jump occured
F - general purpose flag
MF - 'match' flag
S - number of string variables used
$K \quad$ - number of labels used
Y \quad - number of words in last input string
W - number of alternative words to be matched
Other variables are used as temporary 'scratchpads' and loop counters. Subroutine 1000 is used several times in the Interpreter as a general purpose seperator routine. It takes a string $A S$ and a seperator $B \$$ and splits $A S$ into a number of components which were seperated by $B \$$. For example if $A \$$ is a sentence and $B \$$ is a space then subroutine 1000 will split A\$ into seperate words, which will be stored in array A\$. The number of words is Y

CONLAN

10 [CLS]:PRINT " CONLAN INTERPRETER V 2.1"
80 DIM A\$(20), B\$(20), C\$(200), J(20), J\$(20), $S \$(20), N \(20)
99 REM * ${ }^{*}$ COMMAND SELECT ROUTINE 100 PRINT
120 liNPUT " COMMAND ?";A \$
130 GOSUB 800
140 IF $\mathrm{B}=0$ THEN 120
150 ON B GOTO 200,300,400,500
160 DATA WRITE,LIST,EDIT,RUN
199 REM * * WRITE ROUTINE
200 PRINT : INPUT "INCREMENT ?" ;C
202 PRINT : $\mathrm{N}=0$
205 IF A $\$=$ "E" THEN 13C
$207 \mathrm{~N}=\mathrm{N}+\mathrm{C}$
210 PRINT N;: INPUT A\$
220 GOSUB 800 : IF $B<>0$ THEN 150
$240 \mathrm{~B} \$=$ " *": GOSUB 1000
250 IF $F=0$ THEN 270
$260 K=K+1: J \$(K)=A \$(1): J(K)=N$
$270 \mathrm{C} \$(\mathrm{~N})=\mathrm{A} \$:$ GOTO 205
299 REM * * LIST ROUTINE
300 [CLS] : INPUT "WHICH LINES ?" ;L1,L2
310 FOR I = L1 TO L2 : PRINT I;" ";
320 FOR J = 1 TO K
330 FOR $\mathrm{J}(\mathrm{J})=1$ THEN PRINT $\mathrm{J} \$(\mathrm{~J}) ;^{\prime \prime *}$;
340 NEXT J
350 PRINT C\$(I)
360 NEXT I
370 GOTO 100
399 REM * * EDIT ROUTINE
400 PRINT : INPUT "FROM WHICH LINE ?" ;N
405 PRINT
410 C $=1$: GOTO 210
499 REM * * RUN ROUTINE
500 [CLS]: $\mathrm{P}=1$
505 IF C $\$(P)=$ " " THEN 640
507 IF C $\$(P)=$ "E" THEN 700
$510 \mathrm{~J}=0: \mathrm{T} \$=" "$
515 IF RIGHT $\$(\mathrm{C} \$(\mathrm{P}), 1)=" / "$ THEN $\mathrm{C} \$=$ LEFT $\$(C \$(P), L E N(C \$(P))-1):$ GOTO 535
$520 \mathrm{~A} \$=\mathrm{C} \$(\mathrm{P}): \mathrm{B} \$=$ " $/$ " : GOSUB 1000
$530 \mathrm{C} \$=\mathrm{A} \$(1): T \$=\mathrm{A} \$$
535 RESTORE
540 FOR I $=1$ TO $4:$ READ I\$: NEXT
550 FOR I $=1$ TO $5:$ READ I\$
560 IF I $\$=$ LEFT $\$(\mathrm{C} \$, 1)$ THEN $\mathrm{J}=1$
570 NEXT I
$580 \mathrm{IF} \mathrm{J}=0$ THEN 710
$590 \mathrm{C} \$=$ RIGHT\$(C\$,1)
600 IF C $\$=$ " Y " AND MF $=1$ THEN 630
610 IF $C \$=" N "$ AND MF $=0$ THEN 630
620 IF $C \$=" Y$ " OR $C \$=" N$ " THEN 640
630 ON J GOSUB 2000,2100,2200,2300,2400 $:$ IF E $=0$ AND $\mathrm{J}=4$ THEN 100
$640 P=P+1$
650 GOTO 505
660 DATA T,A,M,J,R
700 PRINT"END OF PROGRAM":GOTO 120
710 PRINT "ILLEGAL COMMAND IN LINE"; P;

720 GOTO 120
799 REM ${ }^{* *}$ CHECK INPUT FOR CONTROL COMMAND KEYWORDS
$800 \mathrm{~B}=0$: RESTORE
810 FOR $X=1$ TO 4
820 READ B\$
830 IF A $\$=B \$$ THEN $B=X$
840 NEXT X : RETURN
999 REM * * SEPARATOR ROUTINE
$1000 \mathrm{Y}=1: \mathrm{F}=0$
$1010 \mathrm{~L}=\operatorname{LEN}(\mathrm{A} \$)$
1020 FOR $X=1$ TOL
1030 IF MID $\$(A \$, X, 1)=B \$$ THEN $F=1:$ GOTO 1060
1040 NEXT X
$1050 \mathrm{~A} \$(\mathrm{Y})=\mathrm{A} \$:$ RETURN
$1060 \mathrm{~A} \$(\mathrm{Y})=\operatorname{LEFT} \$(\mathrm{~A} \$, X-1)$
1070 A $\$=\operatorname{RIGHT}(A \$, L-X)$
$1080 \mathrm{Y}=\mathrm{Y}+1$: GOTO 1010
1999 REM * *T ROUTINE
2000 A \$ $=$ T\$: B\$ = "": GOSUB 1000
2005 PRINT
2010 FORI $=1$ TO Y
2020 IF RIGHT $\$(A \$(1), 1)<>$ " $\$ "$ THEN PRINT A\$(1);: GOTO 2060
2030 FOR $M=1$ TO S
2040 IF $\mathrm{N} \$(\mathrm{M})=\mathrm{A} \(I) THEN PRINT $\mathrm{S} \$(\mathrm{M})$;
2050 NEXT M
2060 PRINT " ";:NEXT I
2080 PRINT : RETURN
2099 REM * * A ROUTINE
2100 PRINT : INPUT A\$
$2110 \mathrm{~B} \$="$ "
2120 IF T\$ $<>$ "" THEN 2160
2130 GOSUB 1000
2140 FOR $I=1$ TOY:B\$(I)=A\$(I):NEXT: $W=Y$
2150 RETURN
$2160 \mathrm{~F}=0:$ FOR $\mathrm{M}=1 \mathrm{TOS}: \mathrm{IF} \mathrm{N} \$(\mathrm{M})=\mathrm{T} \$$ THEN F $=1: T=M$
2170 NEXT M
2180 IF $F=0$ THEN $S=S+1: T=S$
$2190 \mathrm{~N} \$(\mathrm{~T})=\mathrm{T} \$: \mathrm{S} \$(\mathrm{~T})=\mathrm{A} \$:$ GOTO 2130
2199 REM * *M ROUTINE
$2200 \mathrm{~B} \$=" ; ": \mathrm{A} \$=\mathrm{T} \$: \mathrm{MF}=0$
2210 GOSUB 1000
2220 FOR $A=1$ TO $Y:$ FOR $B=1$ TO W
2240 IF $\mathrm{A} \$(\mathrm{~A})=\mathrm{B} \$(\mathrm{~B})$ THEN MF $=1$
2250 NEXT B,A
2260 RETURN
2299 REM * * J ROUTINE
$2300 \mathrm{TP}=\mathrm{P}: E=0$
2310 FORI $=1$ TO K
$2320 \mathrm{IF} \mathrm{T} \$=\mathrm{J} \$(\mathrm{I})$ THEN $\mathrm{E}=1: \mathrm{P} \mathrm{J}(\mathrm{I})-1$
2330 NEXT I
2340 IF $E=0$ THEN PRINT "LABEL IN LINE"; P; "NOT FOUND"
2350 RETURN
2399 REM * * R ROUTINE
$2400 \mathrm{P}=\mathrm{TP}$: RETURN

Have You Been Missing Out?

Is your collection of Computing Today looking less well ordered than it did last time you saw it? Has the other half in your life been using your precious back copies for swatting flies? Have you lent a copy to one of your friends and never had it back? If the answer to any of these questions is 'yes' then you need our backnumbers service. We have stocks of the following issues available at $£ 1$ each, inclusive of postage.
DECEMBER' 79 to MARCH ' 80
MAY ' 80 to the current issue.
Owing to heavy demand there are no issues available prior to the December ' 79 copy. We also run a photocopying service for all the issues that we have printed, the cost for each article is £1 inclusive and your order must state which article is required. We publish an annual index that lists all the published articles and this last appeared in the December ' 79 issue.

To order your backnumbers or photocopies write, enclosing your cheque or postal order
for the appropriate amount to:Backnumbers Department, Computing Today, 145 Charing Cross Road, LONDON WC2H 0EE

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,

Programming in Basic (CPB) £9.00
debugging, and clear documentation
BOOK 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, varlable names: LET; errors; coding simple programs. BOOK 2 High and low level languages; flowcharting: functions: REM and documentation; INPUT. IF...THEN. GO TO: limitations of
computers, problem definition BOOK 3 Compilers and interpreters: IOODS FOR NEXT RESTORE; debugging: arravs: bubble sorting: TAB BOOK 4 Advanced BASIC: subroutines: strings: files: complex programming; examples: glossary
Also THE BASIC HANDBOOK (BHB) £11.50 An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and opera-
 tion of calculators and computers
BOOK 1 Decimal Ocral, hexadecimal, and binary number systems and conversion benween number systems; negative numbers: complementary systems. BOOK 2 OR and AND func tions; multiple-input gates; truth tables; De Morgan's Laws: canonical forms: logic convenadders; subtraction: processors and ALU's: multiplication and division BOOK 4 flip flops: adders: subtraction: processors and ALU's: multiplication and division. BOOK 4 flip flops; shitt registers; asynchronous, Synchronous, ring, Johnson, and exclusive-OR feedback
counters, ROMS and RAMS. BOOK 5 Structure of caiculators; keyboard encoding decoding display-data; register systems; control unit: PROM; address de-coding. BOOK 6 CPU, memory organisation character representation; program storage address modes in put output systems; program interrupts; interrupt priorities; programming, assemblers; com
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £7.00 A course covering the material in italics above, but at a slower pace. (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.

PLEASE SEND ME: -
CPB (£9.00)
BHB (E1.50)
DDS (£12.50)
DCL WAYS TO

1) A U.K. cheque or a U.K. postal order (Not Eire or overseas) A bank dratt, in sterling on a London bank (available at any major bank) Exp. \square Diners \square

Card No
Signed
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE AIRMAIL: add $1 / 2$

Name.
Address.
U.K. Delivery: up to 21 days (or send 50 p for 1 st cl.p.)
\qquad

What do you get
 for your money with these exotic devices? The thinking mans guide to the workings of floppy discs.

0ne of the major peripherals small computer users save for is a floppy disc unit. The limitations of the cassette tape system found on many home computer systems soon make themselves felt when large quantities of data are to be handled. Where did the mini floppy discs come from and what can they do for you are two of the commonly asked questions that this artirle will attempt to answer.

Historical Overview

Around four years ago a major American disc manufacturer introduced the first mini floppy disc drive. Within twelve months they had delivered 10,000 units and they had acquired numerous imitators. The manufacturer was Shugart and its baby was the SA400, developed out of bigger ($8^{\prime \prime}$) brothers such as the SA800. This drive and its many brethren offered an opportunity for home computer users to join their disc-based commercial counterparts at not unreasonable prices.

The first units offered only 35 tracks and a storage capacity of 110 kilobytes. Transfer rates were a mere 125 kilobytes per second and the track to track access times were around 40 mS .

Why The Mini Floppy

To understand the need for these devices it is helpful to discuss the shortcomings of serially organised storage devices such as cassette tapes. This medium is widely
used and has a couple of problems that are common to its bigger brothers, the half inch commercial drives. These are: -
a) Search Time. If the bit of data required is at the far end of tape a finite time will pass before it is found, often several minutes.
b) Mechanics. If you wish to have high speed search facilities then you need a sophisticated drive system that is not found in cassettes.
The complexity of a tape machine required to emulate the mini floppy is very high and the data transfer rate is still slow in comparison-HP cartridge drives are better than most. The second point is that as far as the domestic market is concerned little or no software has been written to support file structures on cassette, and that which does exist is generally primitive.

The main attributes of a cassette system are lower cost per byte and a true high volume of data. Half a megabyte can easily be fitted onto a cassette and this is by no means the limit. Also in its favour is the fact that the medium is long lasting, it is often good for 10,000 passes across the heads with no loss of data. A bad mark against the system is the fact that the transfer times are slow. 4800 Baud (about 600 bytes per second) is possible with data tape and a good recorder but this needs a bandwidth of 16 kHz and not many domestic cassettes have this.

In strong contrast the machinery of the mini floppy is very simple consisting of a flexible disc covered with magnetic oxide that is rotated past a head (or

Fig.1. What it looks like inside the cover. The large hole is for the cone shaped drive spindle, the smaller index hole provides synchronisation.
heads) like those in a tape recorder. These move radially, that's from the circumference to the axis, and the information is recorded in a series of concentric circles. The format can be seen in Fig.1.

Reading And Writing

The head must be positioned accurately over the track it is currently reading or writing. New designs are appearing that allow faster and more accurate alignment. The same magnetic gap in the head is used for both read and write as this eases the problem of alignment when reading a previously written track. This positioning is critical to allow for a maximum pickup of the read signal and to prevent the overwriting of other information on the disc.

Capacity of the mini floppy has been increased by doubling the density of recording the information and by using both sides. Information within a disc is divided up into sectors, each having typically 128 bytes of information for the programmer - the rest is used for pre-amble, addresses, check character and postamble information.

The check character is usually made in the form of a cyclical redundancy character (CRC) and is a "hash" total of the information in the sector.

A typical \$100 disc controller card for OEM usage.

Fig.2. An expanded view of the disc surface showing the divisions. These are invisible to the human eye, just like the information on magnetic tape.

Control

Control of a floppy drive is considerably more complex from an electronic point of view than domestic tape recorders, but no more complex than a commercial tape system. Normal operation requires the following:-
a) CRC generation and verification as this would "tie-up" the micro,
b) Read and write of single or multiple sectors,
c) Maintenance of track to track stepping and head settling times.
In order to accomplish these, certain registers will be needed to hold data, current track, current sector, current command and internal status. Among the other things that it must achieve on its own are Direct Memory Accesses (DMAs) with the micro.

It can be seen that this is by no means a simple device and only recently has it been integrated into LSI chips, thus bringing down the price. As an example of the moves made in the design we can look at the evolution of the double sided floppy. The problem was the media wear when both heads were loaded. The solution came with a design in which only one of the heads was loaded, the other remaining in situ. Designs have also varied the method of moving the heads from one track to another and these have included lead screws, pulley bands and spiral wheels - the fastest method is the pulley band and this is often found in the hard discs.

The recording method is digital, unlike the cassette, and with around 5500 flux changes to the inch it is possible to have densities of up to 48 tracks to the inch.

The insides of a typical dual $51 / 4^{\prime \prime}$ floppy disc system. This is used on Triton and runs under CP/M.

Laying It Down

The method of recording is important and there are many possible encoding schemes. Some allow very high densities but need complex electronics, some give high error immunity and others are simply cheap - and hence low density.

Very often the data will be recorded without all its clocks and it is here that the Phase Locked Loop (PLL) comes into its own. The PLL acts like a flywheel and during the pre-amble (which has all the clocks) it runs up to speed. During the data period which has only some clock information it supplies the missing parts.

Another phenomenon that occurs at higher densities is that of peak shift distortion. This needs even more electronics to straighten out the time shifts new generation ICs are being equipped with the necessary logic.

The Users View

The part of the disc that the user sees is the operating system. An interesting example is CP/M. This can support named files. This means that you don't have to knov. tne absolute track/sector location to find the file, only its name. Access to records within a file will generally be either sequential or random. Sequential storage is similar to a cassette and is slower than random. The speed of random access is controlled by an algorithm, these are numerous. Generally the more free space in the file, the better they work.

The Disc Operating System (DOS) will have a command processor giving commands such as:-

DIRectory. General or selective list of files ERAse. Delete file or files
TYPe. Print out file contents
SAVE. File an area of memory onto disc
REName. Change a given file name.
These and many others like PIP which act as utilities make up the DOS.

Other programs that are often supplied with a DOS are things like Editor/assemblers, BASIC compilers and debugging aids. The whole point of buying a DOS such as CP/M is that once tailored to your system, addresses of peripherals etc, you can run any $C P / M$ based software.

A size comparison between $8^{\prime \prime}$ and $51 / 4^{\prime \prime}$ drives, much of the visible electronics is soon to be "chipped".

Summary Of Benefits

The main advantage of a floppy is the speed of loading data and programs. A typical load of a BASIC interpreter from cassette is four minutes. This is why many manufacturers put it in ROM. Loading the same interpreter from a disc takes only seconds. With DOSs like CP/M becoming industry "standards", for all their faults, one is given a vast range of languages and utilities from a wide variety of software "houses".

If the prices of the drives put you off, some manufacturers and suppliers offer a veritable fortune in software on disc for the cost of the media alone Typical offers are Editors, Assemblers, Utilities and Games so it's well worth bargain hunting.

Britain's first com computer kit. The Sinclair ZX80. £79.9

 Price breakdown

 Price breakdown
 ZX80 and manual: £69.52 VAT: £10.43 Post and packing FREE
 Please note: many kit makers quote VAT-exclusive prices.
 You've seen the reviews . . you've heard the excitement ... now make the kit!
 This is the $\mathbf{Z \times 8 0}$. 'Personal Computer World' gave it 5 stars for excellent value.' Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.
 To help you appreciate its value. the price is shown above with and without VAT. This is so you can compare the ZX 80 with competitive kits that don't appear with inclusive prices.

 'Excellent value' indeed!

 'Excellent value' indeed!
 For just $£ 79.95$ (including VAT and p\&p) you get everything you need to build a personal computer at home ...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!
 Yet the $Z \times 80$ really is a complete, powerful, full-facility computer, matching or surpassing
 The Sinclair $\mathbf{Z X} 80$ is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-
 Fewer chips, compact design, volume production more power per pound!

 other personal computers at several times the price.The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done : connect it to your TV ... link it to an appropriate power source *... and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available -see coupon).
*Use a 600 mA at 9 VDC nominal unregulated mains adaptor. Available fromSinclair ifdesired (see coupon).

\section*{The unique and

The unique and
 valuable components of the
 valuable components of the
 Sinclair ZX80.

 Sinclair ZX80.} yourself BASIC manual.The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathrm{ZX80}$ also has string inputto request a line of text when necessary Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter. the character set, operating system, and monitor. And the $\mathrm{ZX80}$'s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines. And Benchmark tests show that the $\mathrm{Z} \times 80$ is faster than all other personal computers. No other personal computer offers this unique combination of high capability and low price

plełe

ZX80 software now available!

See the advertisements in Personal Computer World (June) and Electronics Today International (July).

New dedicated software - developed independently of Science of Cambridge reflects the enormous interest in the ZX80. More software available soon - from leading consultancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only £99.95.

Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX 80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

2×80

Science of Cambridge Ltd

T.P. Goldingham

> Bring colour to your micro's cheeks with this low-cost, programmable peripheral.

Fig 1. A specimen drawing produced by the unit.

TThe NASCOM 1 single board computer has been a popular machine and has acquired a large number of independently made add-ons. One of these items is a colour graphics board...

Half and Half

I ordered the kit by telephone. Was it easy to build? I asked. 'Well, yes, but the modulator need some intricate soldering.' So I chickened out and paid an extra £4 to have the modulator made up. Sure enough, I found when it arrived that this part of the kit does comprise some fifty components on a small, about $3^{\prime \prime}$ square, board and I was quite relieved that this task had been done for me; though it should not be beyond the capacity of anyone who has successfully assembled a NASCOM.

Building Bricks

The main micrographics panel comprises eight ICs and about twenty other components, on a larger panel, and so presents no difficulty. Assembly instructions were clear, and my only problem was a discrepancy between the instructions, which refer to 7 V 5 , and the circuit diagram, which shows +9 V . The colour modulator can be used for black and white operation, though I find that it does not give as clear a display on my portable black-and-white set as the original modulator (which is not disconnected, and can still be used).

A little more tricky is the task of connecting the micrographics board to the NASCOM. This requires a total of twenty connections. My NASCOM is mounted in a case, and has already been extensively modified, so working on the back of the board is an intricate operation. However, eleven of the connections are to the same chip (IC 17), and three more to Socket A. To minimise disturbance to the NASCOM board I removed the chip concerned and substituted a header, which I connected with the rainbow cable supplied to the standard socket. I was then able to make the micrographics connections to this socket, which was much easier to work on.

Kaleidoscopic Success

Eventually, all was complete, and the basic test pattern duly appeared. There are three preset potentiometers which have to be adjusted to obtain the best balance of the three primary colours. Having set these to my satisfaction, I keyed in the software and demonstration program supplied, and pressed Execute. The fascinating kaleidoscopic display that greeted my eyes fulfilled all my expectations, and made all the time and expense seem well worth while.

Let me explain a little more about how the William Stuart system works. It is what is known as a 'pixel' (picture select) system. This means that each of the NASCOM screen's character positions is broken up into four quarters, each of which can be separately switched to any of the seven colours; red, green, yellow, blue, mauve, cyan and white, or to black. The
screen is thus divided into 96×32 positions. This gives wide flexibility in constructing all sorts of graphical effects. It is also possible to change the background colour.

Software Supplied

The software supplied comprises two subroutines which occupy from 0C50 to OCFF. The first, PLOT, colours one pixel to the desired colour, its position being determined by its x and y co-ordinates which are loaded into $B C$. The code for the colour is loaded in the register L'

The second subroutine, which uses PLOT, draws a line between any two points. Again, co-ordinates are used, the start point being held in BC and the end in DE .

Suppose, then, that one wants to draw a picture. As an example, let's take the fish in Fig.1. This has to be built up by plotting a series of lines. To simplify the task, I wrote the subroutine given in Fig. 2., which enables one simply to store all the co-ordinates in a table. The routine works through the table, picking up each pair of co-ordinates and placing it in BC or DE respectively before calling PLOT. CC followed by a code number causes a change of colour, while the displacements at the start of the table are added to the x and y co-ordinates to position the drawing anywhere on the screen.

Other possible applications include business charts and graphs, games such as Space Invaders, and the generation of mathematically designed colour patterns.

Subroutine 'Draw'

On entry, IX must be set to point to table of coordinates. Format is start x , start y , finish x , finish y ; or CC followed by colour code number. IY points to displacements (x, y) which are added to co-ordinates to position drawing as desired.

DOO	DD	7 E	00	L1:	LD A, (1X + 0)	Pick up first byte from table
D03	FE	CC			CP CC	If colour change.
D05	20	OB			JRNZ + 13 (L2)	
D07	DD	23			INC IX	
D09	D9				EXX	
DOA	DD	6 E	00		LD L', (1X + O)	store next in L'
DOD	D9				EXX	
DOE	DD	23			INC IX	
D10	18	EE			JR - 16 (LI)	
D12	FE	E7		L2:	CPE7	If end of table,
D14	C8				RETZ	return
D15	FD	86	00		ADD A, (IY + O)	Add displacement
D18	47				LD B, A	and store in B
D19	DD	$7 E$	01		LD A, (1X + 1)	Pick up second byte
D1C	FD	86	01		ADD A, ($1 Y+1$ +	add displacement
D1F	4F				LD C. A	and store in C
D20	DD	7 F	02		LD A. (1X + 2)	
D23	FD	86	00		ADD A, ($1 Y+0$)	
D26	57				LD D, A	Repeat
D27	DD	7E	03		LD A, (1X + 3)	for
D2A	FD	86	01		ADD A, (IY + 1)	DE
D2D	5 F				LDE, A	
D2E	CD	A 1	OC		CALL LINE	Call subroutine to plot line
D31	DD	23			INC IX	Move
D33	DD	23				on
D35	DD	23				to
D37	DD	23				next group
D39	18	C5			JR - 57 (L.1)	Repeat
Fig 2.	The	'Dr	aw'	ubro	utine.	

Save money.

Full after-sales service in our own workshops One year guarantee on all machines

Up to 1-6Mib for PET!
 and 'on-line' with the Computhink Disc System

 - Allows powertul business programmes using 16 Extra BASIC commands. "Easy to connect and ual supplied. directly into $16 / 32 \mathrm{~K}$ PEfs, -Simple startup Disc Op. System in ROM. Ready to run-useful written business packages available - Sales and. *Real Purchase Ledger, Stock Confro. Pommercial boundaries Time processing, Enginee wage support - Business BASI Assembler. FORTRAN, COBOL, PASCAL, FORTH ASIFTH PLM PILOT \& CESIL 24K Memary expansion with dual disc tor oid ROM 8 K PET E275

Get into print this easy way! Fast! Immaculate! Silent!

TCM 100 Thermal Printer

- Stop disturbing others with nolsy printout' *Neat, clear 96. ch set. U/L case \& symbols *Marches PetiApple line lengths *Fast $40 \mathrm{ch} / \mathrm{s}$ bides - Reliable - obus bidf "Reilable - roous
only Iwo driven parts - Plug in and go, built in PS
- Plug in and go, built in PSU deraved manual "Therma paper $4 \frac{1}{2}$ in wide $\times 80 \mathrm{tt}$,
less expensive than electro
senstive paper

While yocks last
A snip!

Interfaces -
Pet $\mathbf{E 4 5}$ Ohios $£ 10$
TRS-80 £40 Sorcerer £8
Apple $£ 45$
Apple

Pet $£ 45$ Ohios $£ 10$
TRS-80 £40 Sorcerer £8 Apple $£ 45$

IBM golfball printer ideal for word-processing - Forget expensive SpiaWheel printers - the Golfball produces equal quality at up to 15 ch . per sec. "Match various Iypewtiter styles with 1BM interchangeable heads *Completely reliable - each machine rebuilt by 18 M trained engineers and fully guaranteed *Precision form.filling possible with 15 in . pin-feed platen
Limited supply!
$\left.\begin{array}{ll}12 & 1 \\ 0 & 1\end{array}\right)$
Interfaces -
Pet $£ 45$ Ohios $£ 10$ TRS $80 £ 35$ Sorcerer $£ 8$ Apple $£ 45$

The only lok complete

 compater for under $£ 400$Keyboard computer, power supply, UHF modulator and all cables to plug into your own TV set and cassette recorder and go!! 16 K of user RAM for decent size programmes and data, sophisticated level It Microsoft BASIC Complete with level I and leveil Il programming manuals. What more could you ask?

TRS-80

K level I computer $£ 251.30$

Subroutines make for elegant solutions, especially to last month's game problem.

Hands up all those who found lines 330 and 650 of the listings in the June issue 'of general interest'? Unfortunately, line 650 was not of general enough interest to be included, and line 330 contained an error! The point I was trying to make was this. On INPUT the PET prints a question mark, a space, and then positions the cursor on the third spot. The idea of line 330, and the elusive line 650, is to print two spaces, a dot and then THREE cursor lefts. The blinking cursor is then positioned over the dot which is accepted as input if only return is pressed; any other printing character will overwrite and therefore erase it.

First Home

The way to solve this problem is to work backwards. The shaded area of Fig. 1 shows all the positions from which it is possible to move directly to zero. The objective is to force your opponent to make a move into this area.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Fig.1. Where you can go from zero.

Fig.2. How to get to 12 or 21 .

If you can occupy either square 12 or 21 then this goal has been achieved. The shaded area of Fig. 2 shows the positions from which you may get directly to these squares, and the new objective is to force your opponent into this area.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Fig.3. The key squares in the problem.

By continuing this process we discover that the key squares are those shown in Fig.3. If we occupy one of these squares, then providing we do not make a mistake, we can always win.

Polite Note

It is worth noting at this point, that none of the key squares occur on the bottom row of the grid. You can only win by being polite and going second.

Fig.4. The outline flowchart.

Subroutines

When people start programming they often see little point in using subroutines, as twenty or thirty statements can be debugged with little effort. As they gain experience and become more ambitious their
programs become longer, and harder to understand. Many programs contain similar routines which must be entered every time they are required. This process is both error prone and time consuming, it is also unnecessary. Where a routine is self-contained or used at more than one place in a program it may be replaced by a subroutine. These routines may be debugged and then linked together for the final program.

It is not too difficult to write an outline flowchart for our problem, see Fig.4. This flowchart does not help us to code the sections of the program but it does help us to see which sections are required.

The sections of program which follow form a complete solution to our problem. I shall not work through the coding in line number order as subroutines may occur anywhere, but I shall tackle each piece of coding in what seems to be the most logical order. The program is written in fairly standard BASIC with as few PET nuances as possible.

Yes And No

Any interactive program is bound to ask questions with 'yes' and 'no' answers. The following subroutine allows both ' $y e s^{\prime}$ ' and ' y ' as affirmative replies, and ' n ' and ' n ' as negative responses. Communication with the calling routine is via flag A9, this is set to 1 for a positive reply and to 0 for a negative one. Note that the routine demands a correct response before the return can be executed.

```
3920 REM * * ** QUESTION SUBROUTINE ******
3940 LET A9 = 1
3960 INPUT A$
3980 IF A$ = LEFT$("YES",LEN(A$)) THEN 4080
4000 IF A$ = LEFT$("NO",LEN(A$)) THEN 4060
4020 PRINT "PLEASE ANSWER 'YES' OR 'NO' ";
4040 GOTO 3960
4060 LET A9 =0
4080 RETURN
```


Legal Move

We can divide the check for a legal move into two parts. First we can check that the number input is both an integer an within the range required.

```
2860 REM * * *** SUBROUTINE TO CHECK *****
2880 REM ***** FOR VALID INTEGER. *****
2900 PRINT " - = - NEXT TRY";
2920 INPUT X1
2940 IF X1<0 THEN 3120
2960 IF X1 = INT(X1) THEN 3040
2980 PRINT "SORRY - - - ONLY WHOLE NUMBERS ARE"
3000 PRINT " ALLOWED";
3020 GOTO 2900
3040 IF X 1 < 100 THEN 3120
3060 PRINT "YOUR NUMBER MUST BE LESS"
3080 PRINT "THAN 100";
3100 GOTO 2900
3120 RETURN
```

Then we must check that the number input moves towards zero. In the following section, location M holds the difference between the current position and the number input. Not only must this not be negative, but the units digit must be less than or equal to the units digit of the current position. Communication with the calling program is again via flags, this time F9 is used, 1 signifying a valid move and 0 an invalid move.

4100 REM ***** SUBROUTINE TO CHECK *****
4120 REM ***** THAT MOVE IS LEGAL, *****
4140 LET F9 = 1
4160 IF $\mathrm{M}<0$ THEN 4320
4180 LET T9 = INT(M/10)
4200 LET U9 $=\mathrm{M}-10$ *T9
4220 IF U9 $>\mathrm{X}-10 *$ INT(X/10) THEN 4320
4240 IF U $9=0$ THEN 4340
4260 IF T9 $=0$ THEN 4340
4280 LET D9 = T9 - U9
4300 IF D9 $=0$ THEN 4340
4320 LET F9 $=0$
4340 RETURN
4360 END
Printing intermediate positions of the board requires the values T9 and U9, and the subroutine given above is called just prior to printing in order to set them. The printing routine uses string functions for consistent cutput and N\$ is initialised as the string 'b0123456789' before the following subroutine is called. Line 3740 allows blanks rather than zeros to be printed.

```
3660 REM ***** PRINT THE BOARD NUMBERS * * **
```

3680 PRINT
3700 PRINT
3720 FOR B7 = 1 TO T9 + 2
3740 IF B7 $=2$ THEN 3860
3760 FOR B9 $=2$ TO U9 +2
3780 PRINT MID\$(N $\$, B 7,1)$;MID $\$(N, \$, B 9,1) ; "$ ";
3800 NEXT B9
3820 PRINT
3840 PRINT
3860 NEXT B7
3880 PRINT
3900 RETURN
The last subroutine is the one for the instructions, note that it calls the board printing routine within its own coding, this is an example of a 'nested' subroutine.

3140 REM * * ** PRINT THE INSTRUCTIONS ****
3160 PRINT
3180 PRINT "THIS IS A GAME BASED ON A 10 BY 10"
3200 PRINT " BOARD NUMBERED IN THE FOLLOWING WAY:-"
3220 GOSUB 3700 :REM *** PRINT BOARD ***
3240 FOR DL $=1$ TO 5000:NEXT DL
3260 PRINT " [CLS]"
3280 PRINT "THE FIRST PLAYER BEGINS BY PLACING A"
3300 PRINT " PEG IN ANY SQUARE ON THE BOTTOM ROW,"
3320 PRINT "AND THE OBJECT OF THE GAME IS TO MOVE"
3340 PRINT "IT 'HOME' TO SQUARE ZERO."
3360 PRINT
3380 PRINT
3400 PRINT "WE TAKE TURNS AT MOVING THE PEG, AND"
3420 PRINT" THE WINNER IS THE PLAYER WHO MAKES THE"
3440 PRINT "FINAL JUMP. YOU MAY MOVE THE PEG"
3460 PRINT "HORIZONTALLY, VERTICALLY OR DIAGONALLY"
3480 PRINT "BY AS MANY SQUARES AS YOU WISH, BUT"
3500 PRINT "ONLY MOVES TOWARDS ZERO ARE PERMITTED."
3520 PRINT
3540 PRINT
3560 PRINT "YOU MAY CONCEDE THE GAME AT ANY POINT"
3580 PRINT "BY ENTERING A NEGATIVE NUMBER."
3600 PRINT
3620 PRINT
3640 RETURN

pROBLEM PAGE

Computer's Move

How to hide the computer's move does not have a unique solution. I chose to use the function $P(9-P)-13$ which returns the values 1,5 and 7 when P is 2,3 and 4 . If these values are combined they give the key square numbers $12,21,35,53,47,74$. The following section of coding uses the legal move routine to find whether the computer can a) win, b) move to a key square. If neither of these is possible the computer deducts one from the current position.

```
2400 REM *** * SELECT COMPUTER'S MOVE * * * *
2420 LET M = X
2440 LET N=0
2460 GOSUB 4140 :REM ** LEGAL ? * *
2480 IF F9 = 0 THEN 2560
2500 PRINT " HARD LUCK - - - I MOVE HOME TO ZERO
    AND"
2520 PRINT " WIN":
2540 GOTO 2260
2560 FOR P=4 TO 2 STEP - }
2580 LET T=P* (9-P)-13
2600 LET N = P + 10*T
2620 LET M = X - N
2640 GOSUB 4140 :REM ** LEGAL ? ***
2660 IF F9 = 1 THEN 2800
2680 LET N = T + 10*P
2700 LET M = X - N
2720 GOSUB 4140 :REM * * LEGAL ? ***
2740 IF F9=1 THEN 2800
2 7 6 0 \text { NEXT P}
2780 LET N=X-1
2800 LET X=N
2820 PRINT "I SHALL MOVE THE PEG TO SQUARE" ; X
2840 GOTO }182
```

The rest of the program is straightforward, it starts by initialising some variables and asking whether instructions are required.

```
1180 REM ***** SET-UP AND START *****
1200 T9 = 9
1220 U9 = 9
1240 LET N$ = "0123456789"
1260 PRINT " [CLS]THIS IS THE GAME OF 'FIRST-HOME'"
1280 PRINT
1300 PRINT "DO YOU WANT INSTRUCTIONS";
1320 GOSUB 3940 :REM * * * QUESTION * * *
1340 IF A9 = O THEN 1380
1360 GOSUB 3160 :REM * * * INSTRUCTIONS * * *
1380 PRINT
```

We can now ask if the opponent wishes to start, and if he does we must check that his first move is valid.

```
1400 REM ***** DOES OPPONENT WANT * ****
1420 REM * * * * TO START. * * * * *
1440 PRINT " DO YOU WANT TO START " ;
1460 GOSUB 3940 :REM * * QUESTION * * *
1480 PRINT
1500 IF A9 = O THEN 1780
1520 PRINT "OK - - YOU START - - - ";
1540 PRINT "WHERE DO YOU WISH"
1560 PRINT " TO PLACE THE PEG";
1580 GOSUB 2920 :REM * * * INPUT NO. * * *
1600 PRINT
1620 LET X = X }
1640 IF X > 89 THEN }242
1660 PRINT
```

1680 PRINT "YOU ARE ONLY ALLOWED TO START ON THE"
1700 PRINT " BOTTOM ROW I!!"
1720 PRINT " YOUR NUMBER MUST BE BETWEEN 90 AND 99"
1740 PRINT
1760 GOTO 1540

If the computer has first move it chooses randomly between the range 93 to 97 . The opponent's move is then input and checked.

1770 REM * * * * COMPUTER GOES FIRST * * * *
1780 LET $\mathrm{X}=93+\operatorname{INT}(5$ *RND(1))
1800 PRINT "OK - - I'LL START IN SQUARE" ; X
1820 LET $M=X$
1840 GOSUB 4140 :REM ***LEGAL ? **
1860 GOSUB 3680 :REM * * PRINT BOARD * *
1880 PRINT "TO WHICH SQUARE DO YOU WISH"
1900 PRINT " TO MOVE" ;
1920 GOSUB 2920 :REM * * INPUT NO. ***
1940 PRINT
1960 IF X1> = 0 THEN 2040
1980 PRINT "I'M SORRY YOU GAVE UP . - - I WIN BY"
2000 PRINT " DEFAULT";
2020 GOTO 2260
2040 LET $M=X-X 1$
2060 GOSUB 4140 :REM * * LEGAL ? **
2080 IF F9 $=1$ THEN 2160
2100 PRINT "I'M SORRY . . - YOU CAN'T MOVE THERE"
2120 PRINT "I HOPE YOU'RE NOT TRYING TO CHEAT I!!"
2140 GOTO 1820
2160 LET $X=X 1$
2180 IF $X<$ CLS >0 THEN 2420

Finally we must check for a win and ask if another game is required.

```
2200 REM ***** HUMAN WINS - - ANOTHER GAME ?
2220 PRINT "**** FANTASTIC ****"
2240 PRINT " YOU BEAT ME";
2260 PRINT " - - DO YOU WANT"
2280 PRINT " ANOTHER GAME";
2300 GOSUB 3940 :REM * * QUESTION * *
2320 IF A9 = 1 THEN 1440
2340 PRINT
2360 PRINT "THANKS FOR THE GAME - - BYE BYE FOR
    NOW"
2 3 8 0 ~ S T O P
```


Random Dice

Computer simulation plays a large part in our modern world, and random number generators play a large part in computer simulation. That's why different economists can come up with different predictions and still claim to be right. So, before we all get Clegged, why not try:-

Three dice have the following values on their faces.
$1,3,5,7,9,11$
$1,2,2,3,3,3$
$2,3,5,7,11,13$

If the dice are rolled and the scores are added together, what is the most likely totai?

Unique in concept-the home computer that grows as you do! New!-The Acorn Atom personal plus VATand pEp. COmputer kit

The ATOM-a definitive personal computer. Simple-to-build, simple-to-operate. But a really powerful full-facility computer. And designed on an expandable basis. You can buy a superb expanded package now - tailored to your needs. Or, you can buy just the standard Atom kit, and, as you grow in confidence and knowledge, add more chips. No need to replace your equipment. No need to worry that your investment will be overtaken by new technology. As you need more power, more facilities, you can add them!

-The picture shown demonstrates mixed graphics and characters in three shades of grey provided by the Standard Atom.

The standard ATOM kit includes:

- Full sized QWERTY keyboard Rugged polystyrene case
- Fibreglass PCB 2K RAM 8 K ROM 23 integrated circuits
- Full assembly instructions including tests for fault-finding.
(Once built, connect it to any domestic TV and power source)
- Power requirement: 8 V at 800 M A . ATOM power unit available. See coupon. PLUS FREE MANUAL written in two sections - teach yourself BASIC and machine code for those with no knowledge of computers, and a reference section giving a complete description of the ATOM's facilities. All sections are fully illustrated with example programs.

The ATOM concept

hard copy facility. Interface with other ACORN cards is simplicity itself. Any one ACORN card may be fitted internally.
So you can see there are a vast number of modular options and additions available, expanding with your ability and your budget. The ATOM hardware includes:

- Memory from 2 K to 12 K RAM on board (up to 35 K in case) - 8 K to 16 K ROM (two 4 K additions) 6502 processor Video Display allows high resolution (256×192) graphics and red. green and blue output Cassette interface-CUTS 300 baud
- Loudspeaker allows tone generation of any frequency
- Channel 36 UHF Modulator Output Bus output includes internal connections for Acorn Eurocard.
The ATOM software includes:
- 32-bit arithmetic ($\pm 2,000,000,000$) - High speed execution
- 43 standard/extended BASIC commands Variable length strings (up to 256 characters) -String manipulation functions -2732-bit integer variables 27 additional arrays random number function PUT and GET byte WAIT command for timing ©DO-UNTIL construction Logical operators (AND, OR, EX-OR) LINK to machine-code routines PLOT DRAW and MOVE. in affordable steps to large-scale expansion. You can see from the specifications that the RAM can be increased to 12 K allow. ing high resolution (256×192) graphics. Two further ROM chips, e.g. maths functions, can be added directly to the board giving a 16 K capacity. In addition to $5 \mathrm{I} / 0$ lines partly used by the cauettie interface, an optional VIA device can provide varied $1 / O$ and timer functions and via a buffer device allow direct printer drive. An optional module provides red, green and blue signals for colour. An in-board connector strip takes the ATOM communications loop interface. Any number of ATOMs may be linked to each other - or to a master system with mass storage/

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acom Computer for delvery within 28 days. Return as recelved within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

To: Acom Computer Ltd., 4a Market Hill, CAMBRIDGE CB2 3NJ I enclose cheque/postal order for £ Please debit my Access/Barclaycard No.

PASCAL, A FALSE IDOL?

If your business doesn't justify the expense of floppy discs then our special feature on cassette filing is an absolute must. Complete with the necessary software it allows you to take full advantage of the vast storage capacities of magnetic tape and still be able to find what you want when you need it. Ideal for the really small business or even just the tidy minded.

CHEAP FILING

Is this much mooted language really going to be the saviour of small systems? One of our contributors holds some very controversial views on the topic and airs them through our pages next month. If you are considering which of the many computer languages to learn then this is essential reading.

SORT IT OUT
Have you ever struggled with lists of names or places and tried to re-arrange them into alphabetical order? Do you wish that business program would sort things out before it gave you the latest sales figures? Well with this smart little piece of software, which can be used as either a subroutine or as a self-standing program, you too can have nicely ordered printouts.

Once again the valiant souls at CT have sweated long hours through the night to bring you an exclusive. This time we are giving away no clues but, suffice to say, that the system appears to offer both excellent features and value for money in a very neat package. To find out the secrets of the latest addition to the British micro scene book your copy now, miss it and you'll regret it.

EXCLUSIVE MICRO REVIEW

DIALECTS If you are confused between "Integers" and "Microsofts" and "Extendeds" (among others) then our dissertation on BASIC dialects will certainly be of invaluable assistance. Be baffled no longer by the salesperson's use of programming jargon, become fluent in all the variations on the BASIC theme.

Graphics vary from system to system, we show you how to get the best out of yours, and illustrate the point with examples of artwork generated by a system, using only a square as a design element.

Early electronic computers were designed to accept data from paper tape, magnetic tape or a set lof punched cards and to provide an output to a similar medium which would, ultimately, provide readable hard copy via a printer. More recently, with the advent of the microcomputer, the use of a Visual Display Unit or "glass teletype" has become the norm as the primary input/output device, often with a printer as a parallel output option. With the VDU an important new facility has become available, namely the ability to display graphics as well as text in a program output, provided that the computer has a suitable configuration of hardware and software.

Life's Example

Whilst graphics have always been possible via special printers and $X-Y$ plotters, the VDU offers greater speed and, importantly, permits dynamic as well as static displays. An application of graphics which is greatly enhanced by a CRT display, and which will be familiar to most readers, is J. H. Conway's game of "Life" (actually more of a simulation than a game) in

which the birth, survival and death of a pre-defined pattern of cells is determined by a few simple rules.

Although it is perfectly possible to observe the progress of the cell colonies on a printer, a VDU permits faster execution (important when some cell patterns can survive for tens or even hundreds of generations before reaching either a stable state or complete extinction) and allows the relationships between successive generations to be more easily observed. This particular simulation does not require the computer to have any special graphics facility as the cells can be represented by asterisks etc. and can be implemented on most computers either using a machine code program or using BASIC and POKEing the cells onto the screen, see this and other issues for versions of the program.

Graphic Generation

The graphics available up to the present on most microcomputers have been confined to 'pixel' graphics. Pixels are in fact graphics characters which have been pre-defined and stored in memory in exactly the same

manner as the text characters are stored in the character generator ROM. They are constructed within the same dot matrix format, e.g. $8 \times 8,9 \times 7$ etc., as the text characters. With a well designed set of predefined shapes such as are available on computers like the TRITON and PET, quite elaborate graphic effects have been achieved and numerous games are available which make full use of the facility. Some computers such as the Sorcerer permit a certain number of userdefined characters which can be stored in RAM to be recalled and employed as required. Pixel graphics have the advantage of economic memory usage but nevertheless place a restriction upon what can be displayed. Even when user-defined characters are possible their number is usually restricted to a maximum of 256 . As each dot in a character matrix can be either off or on, the total number of possible combinations on an 8×8 matrix is 2 to the power 64 which is somewhere in the region of 1.84×10 to the power 19. Clearly a different arrangement is required to exploit the full potential definition of a VDU!

One possible solution is to use bit-mapped "high resolution" graphics such as those available on the Apple/ITT 2020 systems. In pixel systems each byte of video RAM stores one character. In bit-mapped systems each bit in the video RAM represents one dot on the screen. Hence the memory requirement for a bitmapped system is much higher but it offer far greater flexibility. A pixel system typically uses 1 K or 2 K of video RAM whereas a bit-mapped system will utilise 8 K to give a resolution of 280×192 (53760 individually addressable points) on the screen.

System Shortages

At present, apart from the Apple, there are relatively few computers in the 'personal' category which offer true "high resolution" graphics. The notable ones are the ITT 2020, Compucolor and HP85. However, the continuing reductions in the price of RAM is likely to mean that many of the more affordable personal computers

will in future offer the facility. There is already a high resolution add-on package available for PET and the new, low cost Acorn Atom promises to offer high resolution graphics as an option

Computer graphics is an area which offers great opportunities for exploration and experimentation to the home user. And in education, teaching programs can often be made more effective by the use of maps and diagrams displayed as well as text. This is a case where one picture can indeed be worth a thousand words. CAL programs which would otherwise have to refer to separate illustrative material can now incorporate it directly. Graphs can be drawn in full definition rather than the bar form usually employed with pixel graphics. In the case of physics and electronics, complex waveforms can be synthesised by the addition of harmonics and displayed.

Computer animation is another possibility open to the home computer user. One American software company is currently offering a 3D animation package for the Apple. It allows scenes to be viewed from any angle and any distance and even rotated. A variable field of view permits zooming in on any particular part of the scene. The program is written in machine code and permits $100-150$ lines per second to be projected so that a 20 line scene can be animated at about 5 frames per second. Such facilities lend themselves well to flight and driving simulations and indeed the same company sells a rather impressive flight simulator which offers a 3D "out-of-the-window" display as well as representation of the basic aircraft instrumentation.

COMPUTER GRAPHICS

Computer Art

Computer art has been around in various forms for as long as computers have existed although the term probably came into use in the mid 1960's. Several exhibitions have been held around the world but perhaps the most important was the 'Cybernetic Serendipity' exhibition, organised at the Institute of Contemporary Arts, London, by Jasia Reichardt in 1968. This demonstrated to the public, at a time before the silicon chip became a media cliché, the potential of the computer as a creative tool. At that time, and until recently, means of exploring that potential was limited to an elite few who had access to a computer to pursue their own interests. Some impressive work has been produced as well as much that is mediocre. Some artists have dismissed the medium as sterile and lacking 'soul' (usually on discovering that some knowledge of programming is required in order to proceed very far). On the other hand, programmers and engineers have often felt that 'that's not what computers are meant for'. In a few cases collaboration between artists and programmers has produced very worthwhile results. As a medium computer art is still very new and many critics find it hard to accept on the grounds that it requires no manual skill in the way that painting or sculpting does. It seems probable, however, that it is here to stay and the recent appointment of a Research Fellow in Computer Art at the Royal College of Art is an indication of a growing acceptance. Lower computer prices and wider availability of true high resolution graphics should help to speed its evolution.

The attractions of computer art are many and will appeal in differing degrees to different people:-
a) The computer can precisely execute a set of instructions which may be simple or complex to produce a visible result which the artist can either accept, modify or reject without having expended the time and effort required to produce a design manually.
b) The computer may either be given explicit instructions or may introduce random variations within limits set by the user.
c) The computer output may itself be considered as the work of art or it may act as a stimulus for further programming or for a manually produced work

Artistic Attempts

The photographs accompanying this article are not claimed to portray any particular artistic merit but are intended to demonstrate the potential of a personal computer in producing programmed designs. All examples employ the single design element of a square, which has been manipulated in size, rotation and position to produce the results shown. Any other shape could have been defined and manipulated in similar ways. The computer used was an ITT 2020 and the photographs taken directly from a monochrome monitor screen. All programming was in BASIC and none of the programs were much longer than twenty lines. The more complex-looking results were achieved by using an EXCLUSIVE OR function so that a complementary colour was produced at the intersection of two lines.

CT would be very interested to see any examples of computer art generated by our readers, with a view to publication within the magazine. Any contributions used will be paid for. Write to the Editor at our 145 Charing Cross Road offices.

Part one of our monthily look at the available computer systems and peripherals.

ACT Microcomputers

SYSTEM 800	CPU	6502	RAM	46K/
Dist:- ACT (Computers),	1/0	RS232	CASS	N/A
Radclyffe House		PARA		
66-68 Hagley Rd, Edgbaston,	BASIC	Yes	Other	Various
Birmingham, B16 8PF	DISC	$2 \times 51 / 4^{\prime}$	m / c	MDOS
021-455 8686				
+ growing regional network	£3,950-8	,950		

Extras:- $8^{\prime \prime}$ disc, printers, modems
Applications:- Stand alone business system that can also run most PET software.

Acorn Computers

ATOM
4A Market Hill
Cambridge
0223-312772

CPU	6502	RAM	$2 \mathrm{~K} / 11 \mathrm{~K}$
I/O	BUS	CASS	Kansas
BASIC	PARA	Other	FP option
DISC	m / c	YES	

£ 125 kit, $£ 150$ built
Extras:- Colour graphics, enhanced BASIC
Applications:- Cased single board with BASIC,
can connect to Eurobus

ACORN	CPU 6502	RAM $1 \mathrm{~K} / 8 \mathrm{~K}$		
Dist:- Acorn Computers Ltd.	I/O PARA	CASS CUTS		
4A Market Hill		BUS		
Cambridge	BASIC	NO	Other	NO
$0223-312772$		DISC	NO	m / c
	2 K			
		$\mathbf{£ 6 5}$ upwards		

Extras:- Rack based expansion capability
Applications:- Single board controller with piggy back Hex + I/O

ADDS

ADDS SYSTEM 75	CPU	8085A	RAM	52 K
Dist:- ADDS (UK) Ltd.	1/O	RS232	CASS	
137 High Street		COMS		
New Malden, Surrey	BASIC	YES	Other	Fortran
01-949 1272				uCobol
Sold through dealer network	DISC	$2 \times 8{ }^{\prime \prime}$	m/c	ADOS

£4,000 upwards, less printer
Extras:- Floppy, printer, system software
Applications:- Complete business system with supplied software and communications interface

Apple Computers

APPLE II	CPU	6502	RAM	$16 \mathrm{~K} / 48 \mathrm{~K}$
Dist:- Microsense,	I/O	Various	CASS	YES
Maxted Road, Maylands	BASIC 2 ver-			
Ave,				
Hemel Hempstead,	sions	Other	Various	
Herts HP2 7LE	OPT	\mathbf{m} / \mathbf{c}	2 K	
$0442-41191$	$\mathbf{E} 695$ upwards			

Extras:- Various discs, colour graphics, I/O
Applications:- Neat cased system with excellent I/O capability including Prestel

Atari

ATARI 400	CPU	6502	RAM $8 \mathrm{~K} / 16 \mathrm{~K}$
Dist:- Ingersoll Electronics	I/O	RS232	CASS
YES			
202 New North Road	BASIC	18 K	Other

London N1 7BL
DISC
£400
Extras:- Printer
Applications:- Programmable games system grown up to home computer

ATARI 800	CPU	6502	RAM	$16 \mathrm{~K} / 48 \mathrm{~K}$
Dist:- Ingersoll Electronics	I/O	RS232	CASS	YES
202: New North Road	BASIC	18 K	Other	
London N1 7BL	DISC		\mathbf{m} / \mathbf{c}	shared
$01-2261200$	$\mathbf{£ 7 5 0}$			

Extras:- Printer, discs, plug in software, modem
Applications:- Expanded version of 400 with wider applications

Athena

ATHENA 8285	CPU 8085A	RAM 64 K	
Dist:- Butel-Comco Ltd.	I/O	RS232	CASS N/A
50 Oxford Street,	BASIC	YES	Other Various
Southampton	DISC $2 \times 514^{\prime \prime}$	m / c	DOS

Southamptoret
DISC $2 \times 5 \frac{1}{4} 4^{\prime \prime} \quad \mathrm{m} / \mathrm{c}$ DOS
Hants SO1 1DL
0703-39890
£3,380 upwards
Extras:- 8" discs, printer
Applications:- Complete integral desktop system

Attache

ATTACHE	CPU 280	RAM	64K	
Dist- Friargrove Systems,	I/O	RS232	CASS	N/A
Suite 62, Outer Temple,	BASIC YES	Other	Various	
222 The Strand,	DISC $2 \times 8^{\prime \prime}$	\mathbf{m} / \mathbf{c}	CP/M	
London WC2R 1BA				
$01-3538267$	$\mathbf{£ 8 , 0 0 0}$			

Extras:- Hard disc,
Applications:- Complete S100 based system with VDU, printer and software

Commodore Systems

PET	CPU	6502	RAM	8 K 32 K
Dist:- Commodore,	1/O	IEEE	CASS	YES
360 Euston Road		PARA	Other	
London NW1 3BL 01-388 5702	BASIC	8K	Other	Pascal
+ many regional	DISC		m/c	

Extras:- Discs, printer, Many options
Applications:- Original complete desktop system

Compshop

UK 101	CPU	6502	RAM	$4 \mathrm{~K} / 8 \mathrm{~K}$
Dist:- CompShop	I/O	RS232	CASS	YES
14 Station Road		PARA		
New Bennet,	BASIC	$8 K$	Other	NO
Herts EN5 1QW	DISC	\mathbf{m} / \mathbf{c}	2 K	
$01-4412922$		$\mathbf{y} 199$ kit, $£ 249$ built		

Extras:- Memory, I/O, kit or built
Applications:- UK Implementation of Superboard

Compucolor

COMPUCOLOR II Dist:- No current UK Main dealership, may re-stock when systems are UK modified	CPU	$\begin{aligned} & 8080 \\ & \text { RS232 } \\ & \text { PARABUS } \\ & \text { YES } \\ & 51 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { RAM } \\ & \text { CASS } \end{aligned}$	$\begin{aligned} & 8 K / 32 K \\ & \text { NO } \end{aligned}$
	I/O			
	BASIC		Other	NO
	DISC		m / c	DOS
	£1,200			

Applications:- Integral colour graphics system with poor UK reliability record

Cromemco

CROMEMCO SYSTEM 2	CPU	Z80	RAM	$64 K$
Dist:- Comart Ltd.	I/O	RS232	CASS	N/A
PO Box 2,		PARA.P		
St Neots,	BASIC Various	Other	Various	
Huntingdon,	DISC	$2 \times 51 / 4^{\prime \prime}$	\mathbf{m} / \mathbf{c}	CDOS
Cambs PE19 4 NY				
0480-215005	$\mathbf{E 2 , 0 9 5 - £ 7 , 0 0 0}$			
+ Many regional dealers				

Extras:- Hard option disc, multiple user capability, printer, etc
Applications:- Development system, S100 based, with a wide range of software

CROMEMCO SYSTEM 3	CPU	Z80	RAM 64K	
Dist:- Comart Ltd.	I/O	RS232	CASS N/A	
PO Box 2,		PARA.P		
St Neots,	BASIC Various	Other Various		
Huntingdon,	DISC $2 \times 8^{\prime \prime}$	\mathbf{m} / \mathbf{c}	CDOS	

Cambs PE19 4NY
0480-215005
£3,745-£9,000

+ Many regional dealers
Extras:- Discs (inc hard), multi-user capability, printers, etc.
Applications:- S100 based professional system with a wide range of applications.

Equinox

EQUINOX IMS 5000	CPU	Z80	RAM $32 \mathrm{~K} / 48 \mathrm{~K}$	
Dist:- Equinox Computers,	\mathbf{I} / O	RS232	CASS N/A	
Kleeman House		PARA		
16 Anning Street,	BASIC YES	Other Various		
New Inn Yard,	DISC $2 \times 51_{4}^{\prime \prime}$	\mathbf{m} / \mathbf{c}	CP/M	
London EC2A $3 H B$				
$01-7392387$	$\mathbf{£ 1 , 5 2 5 - £ 2 , 6 6 5}$			

Extras:- $8^{\prime \prime}$ floppies, hard-discs, VDU, printer, etc
Applications:- S100 based system with integral disc drives

Eurocalc

| EUROC | CPU 8080 | RAM 64 K | |
| :--- | :--- | :--- | :--- | :--- |
| Dist:- Eurocalc Ltd. | I/O | PARA | CASS N/A |
| $128 / 132$ Curtain Road, | BASIC YES | Other Various | |
| London EC2 | DISC $2 \times 8^{\prime \prime}$ | \mathbf{m} / \mathbf{c} | CP/M |

01-7294555
£ 8,000

+ Regional Distribution network soon
Extras:- Printers, WP keyboard, Hard disc
Applications:- Plessey manufactured system supplied complete with software and hardware

Exidy

EXIDY SORCERER	CPU	Z80	RAM	$16 \mathrm{~K} / 48 \mathrm{~K}$
Dist:- Liverport Data Pro- ducts				
The Ivory Works,		RS232	CASS	2
St Ives, Cornwall $0736-798157$ + regional dealers	BASIC	Plug In	Other	On disc
	DISC	OK	OPT	$\mathbf{m / c}$
		4 K		

Extras:- Discs, printer, S100 adapter, Rom Pacs
Applications:- Keyboard based system using 'plug-in' software and expanding to discs

Heath Electronics

HEATHKIT H8	CPU 8080	RAM $4 K / 56 \mathrm{~K}$	
Dist:- Heath Electronics,	I/D	Various	CASS YES
Bristol Road	BASIC YES	Other Various	
Gloucester GL2 6EE			
on disc			

0452-29451
DISC OPT
m/c $\quad 4 K$
+ London shop 01-636 7349
£275

Extras:- Discs, printer, VDU
Applications:- Bus based kit system of superb quality, large
expansion possible
Hewart Microelectronics

HEWART 6800S	CPU	6800	RAM	16K/32K
Dist:- Hewart Microelectronics	1/0	RS232	CASS	
95 Blakelow Road,		PARA		
Macclesfield,	BASIC	OPT 8K	Other	Pascal
Cheshire SK11 7ED	DISC		m / c	1K/2K
22030				

Extras:- 6809 upgrade, floppy discs using FLEX, case
Applications:- Naked 6800 development system

HEWART 6800 MK4	CPU 6800	RAM	$16 K / 48 K$
Dist:- Hewart Microelectronics	I/O	choice	CASS 2
95 Blakelow Road,	BASIC OPT	Other	OPT
Macclesfield	DASC OPT		\mathbf{m} / \mathbf{c}
Cheshire SK11 7ED			
$0625-22030$	$\mathbf{~} 160$ upwards.		

Extras:- SS50 range of boards.
Applications:- Naked bus based system, found useful in education/control.

Hewlett Packard

HP 85	CPU	CUSTOM RAM $16 \mathrm{~K} / 32 \mathrm{~K}$		
Dist:- Hewlett Packard	I/O	IEEE	CASS CART	
King Street Lane,		RS232		
Winnersh,	BASIC	32 K	Other	
Wokingham, Berkshire	DISC		m/c	

0734-784774
£ 2,300

Extras:- All HP range of goodies
Applications:- Integral printer system for desktop scientific use.

Interec Data Systems

SUPERBRAIN	CPU	2×280	RAM	$32 \mathrm{~K} / 64 \mathrm{~K}$
Dist:- Icarus Computers,	I/O	RS232	CASS N/A	
27 Greenwood Place	BASIC YES	Other Various		
London NW5 1NN	DISC $2 \times 51_{4}^{\prime \prime}$	\mathbf{m} / \mathbf{c}	CP/M	
		$\mathbf{£ 1 , 9 5 0}$ upwards		

Extras:- $8^{\prime \prime}$ disc, standard software
Applications:- S 100 bus based complete unit of smart desktop type

Ithaca Intersystems

ITHACA INTERSYSTEM 2
Dist:- Transam,
12 Chapel Street,
London NW1
01-402 8137

+ regional dealers
Extras:- Full range of S 100 boards to IEEE spec.
Applications:- Flexible system that can be adapted to a wide range of uses.

ITT Consumer Products

ITT 2020	CPU	6502	RAM $16 \mathrm{~K} / 48 \mathrm{~K}$
Dist:- Telefusion Ltd..	I/O	Various	CASS YES
61 Queens Square	BASIC Various	Other Pascal	

Bristol 0272-211446 + many regional stockists	DISC £750	OPT $£ 1,500$	m/c	2 K
Extras:- Discs, Prestel, Printers. Applications:- As Apple II, compatible UK version with standard colour graphics.				
Luxor				
ABC 80 Dist:- Luxor CCS Microsales, 7 The Arcade, Letchworth, Herts. 04626-73301 +1 other	CPU 1/0 BASIC DISC £749	$\begin{aligned} & \text { Z80 } \\ & \text { IEEE } \\ & \text { RS232 } \\ & 16 K \\ & 2 \times 51 / 4^{\prime \prime} \end{aligned}$	RAM CASS Other m / c	$\begin{aligned} & 16 \mathrm{~K} / 40 \mathrm{~K} \\ & \mathrm{YES} \\ & \text { Pascal } \\ & 2 \mathrm{~K} \end{aligned}$

$\begin{array}{llll}\begin{array}{l}\text { 02405-75151 } \\ \text { + regional network }\end{array} & \text { DISC } & \mathrm{m} / \mathrm{c} & 2 \mathrm{~K}\end{array}$
Extras:- Printer, RAM, case, discs.
Applications:- Low cost kit system, developed from Nascom 1.

National Panasonic

PANASONIC JD800/840	CPU	8085 A	RAM	$56 K$
Dist:- Panasonic Business Equip.	I/O	RS232	CASS	N/A
9 Connaught Street	BASIC YES	Other	Cobol	
London W2 2AY	DISC	$2 \times 8^{\prime \prime}$	m / c	CP/M
01-262 3121				
+ regional distributors	$\mathbf{£ 4 , 2 7 5}$ (hardware)			
	$£ 8,000$ upwards for packages			

Extras:- Printers and software from regional distributors.
Applications:- Complete small business system with software support.

Newbear

77-68	CPU 6800	RAM $4 \mathrm{~K} / 56 \mathrm{~K}$	
Dist:- Newbear,	I/O Various	CASS YES	
40 Bartholomew Street	BASIC OPT	Other NO	
Newbury, Berks.	DISC	m / c 1K	
$0635-30505$			

+2 regional shops £40 upwards
Extras:- 6809 upgrade, 1/O, discs
Applications:- Rack based kit system.

Netronics

ELF II
Dist:- Newtronics,

CPU	1802	RAM	$1 / 4 / 4 \mathrm{~K}$
I/O	Hex	CASS	OPT
BASIC	OPT	Other	
DISC		m / c	1 K

255 Archway Road
London N6
01-348 3325

Extras:- Motherboard, RAM, I/O.
Applications:- Low cost kit for Hex programming.

EXPLORER 85	CPU 8085	RAM	$4 K$	
Dist:- Newtronics,	I/O	4×8, ser	CASS	YES
255 Archway Road	BASIC	$8 K$ OPT	Other	
London N6	DISC	\mathbf{m} / \mathbf{c}	$2 K$	

-1-348 3325
£285 upwards
Extras:- Normal S100 goodies, case
Applications:- Kit, S100 based.

North Star

RAM $1 \mathrm{~K} / 6 \mathrm{~K}$
NASCOM 1
Dist:- Nascom
92 Broad Street
Chesham, Bucks HP5 3ED
02405-75151

+ regional network

CPU	Z80
I/O	RS232
	PARA

CASS YES
BASIC OPT Other
DISC $\mathrm{m} / \mathrm{c} \quad 1 \mathrm{~K}$
£ 125
Extras:- Motherboard, RAM, printer.
Applications:- Full keyboard machine code system, expandable.

NASCOM 2	CPU	Z80	RAM 9K
Dist:- Nascom	I/O	RS232	CASS Kansas
92 Broad Street		PARA	
Chesham, Bucks HP5 3ED	BASIC 8K	Other	

NORTHSTAR HORIZON
Dist:- Comart Ltd.,
P.O. Box 2, St Neots

Huntingdon, Cambs PE19 4NY
0480-215005

+ many regional dealers

CPU	Z80	RAM	$32 K / 56 K$
I/O	RS232	CASS	N/A
	PARA		
BASIC	YES	Other	Various
DISC	$2 \times 514^{\prime \prime}$	\mathbf{m} / \mathbf{c}	CP/M
$\mathbf{f 1 , 6 0 0}$	$-2,000$		

Extras:- Discs, VDU, printer.
Applications:- S100 based system with good software support.

Ohio Scientific Instruments

SUPERBOARD II, C1	CPU	6502	RAM	4K/8K
Dist:- Mutek,	1/0	PARA	CASS	YES
Quarry Hill, Box		BUS		
Wiltshire	BASIC	8K	Other	NO
0225-743289	DISC	NO	m / c	2 K
man	£150			
	cased	psu +	$d=C 1$	@ £220

Extras:- Discs, Memory, case.

BUYER'S GUIDE

Applications:- Naked single board with BASIC, modified display for UK market.

CHALLENGER, C2	CPU	6502	RAM	$4 K / 32 K$
Dist:- Mutek,	I/O	RS232	CASS Kansas	
Quarry Hill		PARA		
Box, Wiltshire	BASIC 8K	Other NO		
0225-743289	DISC	OPT	\mathbf{m} / \mathbf{c}	2K
+ many regional				

Extras:- Disc, printer, memory.
Applications:- 4 slot backplane machine, upgraded system

CHALLENGER, C4	CPU	6502	RAM	8K/32K
Dist:- Mutek,	1/O	RS232	CASS	YES
Quarry Hill		PARA		
Box, Wiltshire	BASIC	8K	Other	NO
0225-743289	DISC	OPT	m / c	4K
+ many regional				

Extras:- Disc, printers, etc.
Applications:- Upgraded C2 with colour graphics.

CHALLENGER, C8P	CPU	6502	RAM $8 \mathrm{~K} / 32 \mathrm{~K}$	
Dist:- Mutek,	I/O	RS232	CASS YES	
Quarry Hill		PARA		
Box, Wiltshire 0225-743289 + many regional	BASIC 8K	Other NO		
	DISC	OPT	$\mathbf{m} / \mathbf{c} 4 \mathrm{~K}$	
		$\mathbf{£ 4 7 5}$		

Extras:- Discs, voice synth, colour graphics.
Applications:- Colour graphics version of C2 but with
8 slot backplane.

CHALLENGER, C3
Dist:- Mutek,
Quarry Hill
Box, Wiltshire
0225-743289

+ many regional

CPU	6502	RAM	$48 \mathrm{~K} / 56 \mathrm{~K}$
	$6800+$ Z80		
I/O	Various	CASS	N/A
BASIC	YES	Other	Various
DISC	$2 \times 8^{\prime \prime}$	\mathbf{m} / c	DOS
$\mathbf{E} 2,450$			

Extras:- VDU, printer, software
Applications:- Triple CPU system for business use etc.

Ontel

JEMINI
Dist:- Jaserve Ltd.
Stanhuce Road,
Camberley, Surrey
0276-62282
$\begin{array}{ll}\text { CPU } & 8085 A \\ \text { I/O } & \text { RS232 } \\ \text { BASIC } & \text { YES } \\ \text { DISC } & 2 \times 8^{\prime \prime}\end{array}$
£9,200 upwards

Extras:- WP Software, printers, etc.
Applications:- VDU based package system.

Periflex

PERIFLEX $630 / 48$
Dist:- Sintrom
Arkwright Road, Reading
Berks RG2 OLS
0734-85464

CPU	280
I/O	Various

BASIC Vaious
DISC $2 \times 5 \frac{1}{4}$ "
£2,500
Extras:- VDU, printers, S100 board set
Applications:- S100 based systems.

PERIFLEX 1024/64
Dist:- Sintrom
Arkwright Road, Reading
Berks RG2 OLS
0734-85464

CPU	Z80	RAM	$64 K$
$1 / O$	Various	CASS	N/A
BASIC Various	Other Various		
DISC $2 \times 8^{\prime \prime}$	m / c	CP/M 2	

£3,300

Extras:- VDU, printers
Applications:- S100 based boxed computer.

Powerhouse

POWERHOUSE 2	CPU	Z80A	RAM	$32 K / 64 K$
Dist:- Powerhouse	I/O	RS232	CASS	YES
5 Alexandra Road		PARA.P		
Hemel Hempstead, Herts HP2 5BS	BASIC YES	Other	NO	
HASC	DISC	OPT	\mathbf{m} / \mathbf{c}	$2 K$

0442-48422
£ 1,250

Extras:- Graphics, 1/O, printer
Applications:- $5^{\prime \prime}$ VDU based system used in scientific and industrial control.

POWERHOUSE 3	CPU	Z80A	RAM	32K/64K
Dist:- Powerhouse	1/0	RS232	CASS	N/A
5 Alexandra Road		PARA.P		
Hemel Hempstead,	BASIC	YES	Other	Various
Herts HP2 5BS	DISC	$2 \times 51 / 4^{\prime \prime}$	m / c	CP/M
0442-48422	£ ,250	2,750		

Extras:- Graphics, I/O, printer
Applications:- $9^{\prime \prime}$ VDU based system with potential DP and small business applications.

Powertran

PSI COMP 80
Dist:- Powertran Electronics
Portway Industrial Estate Andover, Hants SP10 3MN 0264-64455

RAM $3 K / 32 K$ CASS Kansas Other NO $\mathrm{m} / \mathrm{c} \quad 1 \mathrm{~K}$

Applications:- Mathematical/number crunching with special on-board chip.

Rair

BLACK BOX	CPU	$8085 A$	RAM	$32 K / 64 K$
Dist:- Rair Ltd.	I/O	RS232	CASS N/A	
30-32 Neal Street,	BASIC Various	Other Various		
London WC2H 9PS	DISC	$2 \times 5 \frac{1}{4}$	\mathbf{m} / \mathbf{c}	CP/M
$01-8364663$				

Extras:- VDU's, printer, hard and floppy discs,
Applications:- Disc based professional system capable of handling up to 16 terminals.

Research Machines

RML 3802	CPU Z80	RAM $16 \mathrm{~K} / 56 \mathrm{~K}$	
Dist:- Research Machines	I/O Various	CASS YES	
P.O. Box 75,	BASIC YES	Other Various	
Mill St, Oxford	DISC OPT	m / c	3K
$0865-49791$			

RAM 48 K Extras:- Graphics, printer, etc.

Applications:- Educational system of high quality.

Rockwell

AIM 65	CPU	6502	RAM	$1 \mathrm{~K} / 4 \mathrm{~K}$
Dist:- Pelco Electronics	1/O	RS232	CASS	2
Enterprise House		PARA		
83-85 Western Road	BASIC	8K op	Other	
Hove, Sussex BN3 1UB	DISC		m / c	8K
0273-722155				
+ several regional outlets	£265 up	wards		

Extras:- Discs, RAM, VDU, cases, etc.
Applications:- Versatile single board with single lir.. display and thermal printer

Sanyo

SYSTEM 7000	CPU	Z80	RAM	$32 \mathrm{~K} / 64 \mathrm{~K}$
Dist:- Memory Computers (UK)	I/O	RS232	RAM	N/A
Denjon House,	BASIC	YES	Other	Various
11 Denmark Street	DISC	$2 \times 5 \frac{1 / 4}{}$	m/c	CP/M
London WC2 $01-8365342$ E6,950 (complete systems)				

Extras:- $8^{\prime \prime}$ floppies, printers, etc.
Applications:- Complete VDU based system well established in Europe.

SGS Ates

NANOCOMPUTER	CPU	Z80	RAM	4K/16K
Dist:- SGS Ates/	1/O	RS232	CASS	YES
Midwich,		$2 \times \mathrm{PIO}$		
9 Churchgate Street	BASIC	8K opt	Other	
Old Harlow, Essex CM17 0JS	DISC		m / c	2K
0279-412605				

Extras:- Experimenter systems, full system capability.
Applications:- Educational single board that can grow to fill system.
Sinclair Research

ZX80	CPU	Z80	RAM	$1 \mathrm{~K} / 14 \mathrm{~K}$
Dist:- Science of Cambridge	I/O	PARA	CASS YES	
6 Kings Parade		BUS		
Cambridge	BASIC $4 K$	Other NO		
Cambs CB2 1SN	DISC NO	N/		
0223-311488	£80 kit, $£ 100$ built			

Extras:- Kit or ready built, PSU, RAM
Applications:- Touch keyboard, low-cost beginners/educational system

Sharp Electronics

MZ-80K	CPU Z80	RAM $6 K / 34 K$	
Dist:- Sharp UK Ltd.	I/O PARA	CASS YES	
Thorp Road, Newton Heath	BASIC 14K	Other	
Manchester M10 9BE	DISC	m/c	$4 K$
061-205 2333			
+ growing regional	$\mathbf{£ 4 8 0}$ to $£ 599$		

Extras:- Discs, printer, 1/O adapter
Applications:- Japanese desktop system expanding to business market.

Smoke Signal

SMOKE SIGNAL CHIEFTAN

Dist:- Strumech

Portland House, Coppice Side,
Brownhills, Walsall
West Midlands
05433-4321

+ Windrush

CPU	6800	RAM	$32 \mathrm{~K} / 56 \mathrm{~K}$
I/O	RS232	CASS	N/A
SS50			
BASIC	YES	Other	Various
DISC	OPT	\mathbf{m} / \mathbf{c}	$1 \mathrm{~K}+$ DOS

Extras:- Floppies, printers, VDUs.
Applications:- Mainly supplied to education and research
although suitable for business.

Sord

SORD M100 ACE	CPU Z80	RAM	48K	
Dist:- Midas Computer Services	1/O Various	CASS	N/A	
2 High Street,	BASIC YES	Other	Fortran	
Steyning, Sussex	DISC $2 \times 51 / 4^{\prime \prime}$	\mathbf{m} / \mathbf{c}	SOS	
0903-814523				
+ some regional distributors	$\mathbf{£ 1 , 0 0 0}$ upwards			

Extras:- Disc, colour graphics, printers
Applications:- S100 based disc system from Japan mainly aimed at the educational market.

Southwest Technical Products

SWTP 6800/6809	CPU	6800	RAM	$8 K / 56 \mathrm{~K}$
Dist:- Southwest Technical		6809		
38 Dover Street,	I/O	Various	CASS YES	
London W1X 3RB	BAS!C Various	Other Various		
01-491 7507	DISC	OPT	m/c	2K

Extras:- Discs, printer, VDU.
Applications:- SS50 based system with good software support.

Tandy Corporation

TRS-80 Level $1 \& 2$	CPU Z80	RAM $4 K / 48 \mathrm{~K}$	
Dist:- Tandy Corp..	I/O	OPT	CASS YES
Bilston Road, Wednesbury	BASIC 2 versions Other Fortran		
West Midlands WS10 7JN	DISC OPT	m/c	4K
021-556 6101			
+ regional shops	$\mathbf{£ 3 8 0 - £ 5 6 0}$		

Extras:- Discs, printers, I/O.
Applications:- Top selling system with "separates" approach.

TRS-80 II	CPU	280	RAM $32 \mathrm{~K} / 64 \mathrm{~K}$
Dist:- Tandy Corp.,	I/O	RS232	CASS N/A
Bilton Road, Wednesbury		PARA	
West Midlands, WS10 7JN	BASIC YES	Other	
021-556 6101	DISC $8^{\prime \prime}$	\mathbf{m} / \mathbf{c}	
+ regional shops			
	$\mathbf{E 2 , 0 0 0}$ upwards		

Extras:- Printer, disc.
Applications:- Upgraded business version of Model I.

Tangerine Computers

$\left.\begin{array}{lllll}\text { MICROTAN } 65 & \text { CPU } & 6502 & \text { RAM } & 1 \mathrm{~K} / 48 \mathrm{~K} \\ \begin{array}{l}\text { Dist:- Tangerine Computers } \\ \text { Forehill, Ely, Cambs. }\end{array} & \text { I/O } & \text { PARA } & \text { CASS OPT } \\ \text { 0353-3633 } & & \text { BUS }\end{array}\right)$

Extras:- Tanex board for I/O, BASIC, etc + racking,cases.
Applications:- Machine code system, kit or built that expands to a full computer.

MICRON	CPU	6502	RAM	8K
Dist:- Tangerine Computers	I/O	RS232	CASS	YES
Forehill,Ely,Cambs.		PARA		
0353-3633	BASIC	10K	Other	NO
	DISC	NO	\mathbf{m} / \mathbf{c}	3K

Extras:- RAM, discs, I/O in rack system.
Applications:- Cased built system with excellent expansion possibilites.

Technalogics

TECS	CPU	6800	RAM $16 \mathrm{~K} / 56 \mathrm{~K}$	
Dist:- Technalogics	I/O	RS232	CASS 2	
8 Egerton St.Liverpool,		PARA		
Merseyside L8 7LY	BASIC	3 K	Other YES	
051-724 2695	DISC	OPT	m/c 4 K	

[^3]Extras:- Discs, Memory, Prestel Software.
Applications:- Prestel/Teletext terminal option to home system

BUYERS GUIDE

Texas Electronic Instruments

Extras:- 8" discs (212) printers, hard disc soon.
Applications:- Integral VDU models forming the basis of a business system

Texas Instruments

T1 99/4	CPU	9900	RAM	16K
Dist:- Texas Instruments,	1/O	PARA	CASS	
European Consumer Division,		BUS		
Manton Lane,	BASIC	14 K	Other	NO
Bedford MK41 7PA	DISC	OPT	m / c	12K
+ dealer network	£995			

Extras:- Discs, speech synthesiser
Applications:- Colour graphics machine with "plug-in" software.
Needs US TV.

Transam

TRITON	CPU	8080	RAM $1 \mathrm{~K} / 3 \mathrm{~K}$	
Dist:- Transam,	I/O	PARA	CASS YES	
12 Chapel Street, London NW1	BASIC BUS		Various	Other
$01-4028137$		Pascal		
	DISC	OPT	m / c	Various

$£ 294$ to $£ 1,000$

Extras:- Cases, Discs, Motherboard, Assembler package
Applications:- Versions available for most requirements,
from educational to research

Extras:- Casing, VDU option, discs, Firmware, S 100 boards
Applications:- 100 based kit, development
style system. Also ready built

Vector Graphic

SYSTEM B	CPU	Z80	RAM	64 K
Dist:- Sintrom.	1/0	Serial	CASS	N/A
Arkwright Road, Reading		PARA		
Berks RG2 OLS	BASIC	Various	Other	Variou
0734-85464	DISC	$2 \times 51 / 4^{\prime \prime}$	m / c	CP/M 2
+ many regional				

Extras:- Printer, software, S100 boards
Applications:- Serious computing package
complete with VDU and software

VECTOR GRAPHIC 2800	CPU	280	RAM	64K
Dist:- Sintrom,	1/0	SERIAL	CASS	N/A
Arkwright Road, Reading		PARA		
Berks RG2 OLS	BASIC	Various	Other	Various
0734-85464	DISC	2×8 "	m/c	CP/M 2
+ many regional	£3,995	pwards		

Extras:- Printers, S 100 boards, software
Applications:- Data processing and scientific/industrial computing Terminal based system.

VECTOR GRAPHIC 3030
Dist:- Sintrom.
Arkwright Road, Reading.
Berks RG2 OLS
0734-85464

+ many regional

Extras:- Printers, S100 boards, software
Applications:- Hard disc based terminal system for DP

Video Genie

Extras:- Printer, discs via Tandy.
Applications:- HONG KONG copy of TRS-80 Model 1 and runs all TRS software.

Xerox

Extras:- Business software, Printer, Communications adapter
Applications:- Complete business system that can be multi-tasked. Price includes software.

DIABLO RANGER 3200	CPU 8080	RAM	$32 \mathrm{~K} / 64 \mathrm{~K}$	
Dist:- Business Computers.	I/O	RS232	CASS	N/A
The Pagoda, Theobald Street,	BASIC	YES	Other	DACL
Borehamwood, Herts WD6 4RT	DISC $2 \times 8^{\prime \prime}$	m / c	DOS	
$01-2073344$				
		$10,865-\mathbf{f 5 0 , 0 0 0}$		

Extras:- Up to 4 discs, Up to 2 hard discs, Printers, Communications adapter.
Applications:- Complete system that can run up to eight jobs
simultaneously, price includes software.

Zenith Data Systems

ZENITH 289	CPU	280	RAM	16K/
Dist:- Zenith Data Systems.	1/0	RS232	CASS	
Heath Electronics. Bristol Road				(H88)
Gloucester GL2 6EE	BASIC	YES	Other	Various
0452-29451	DISC	51/4"	m / c	
+ London shop 01-636 7349				

Extras:- Dual discs, printer.
Applications:- Integrated system of very high quality, also available as a kit.

ZENITH Z11

Dist:- Zenith Data Systems. Heath Electronics, Bristol Road Gloucester GL2 6EE

+ London shop 01-636 7349

| CPU LSI 11 | RAM | $16 \mathrm{~K} / 32 \mathrm{~K}$ |
| :--- | :--- | :--- | :--- |
| I/O Various | CASS | N/A |
| BASIC YES | Other Various | |
| DISC OPT $2 \times 8^{\prime \prime}$ | m / c | N/A |

£1,250
Extras:- Discs, printer, VDU.
Applications:- LSI 11 compatible 16 bit system.

TELEPHONE 01-883 3705, 01-883 2289

56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN

your soundest connection in the world of components

PETS
All with new keyboard and green screen

2001-8N 8K RAM £399
2001-16N 16K RAM £499 2001-32N 32K RAM £599 CASSETTE DECK £55

INTERFACES AVAILABLE

$X-Y$ Plotters, Analogue to Digital Convertors, 16 Channel Interfaces, B1 Directional Interfaces, etc.

BUILT $2114 £ 22.50$

LS Series

BUILT \& TESTED $\mathbf{f} \mathbf{2 4 9}$

Phone or send s.a.e. for latest price list on all our range.
Purinchio Please add VAT 15% to all prices. Postage or send s.a.e. for latest price list on all our range. Place your order using your Barclay or Access Card. (Minimum Telephone order £5.00). Trade and Export enquiries welcome. Credit Facilities arranged.

ASC11 CODED KEYBOARD

60 keys with auot repeat and two-key rollover functions. Brand new. S.a.e. for details. f47.15 inc P\&P and VAT.

THE ZX80 MAGIC BOOK

Incantations to make the ZX80 do your bidding. Mysteries explained. Programs to run. $£ 4.75$ inc P\&P (no VAT)

TIMEDATA Ltd.

57 Swallowdale, Basildon, Essex.

FREE - ADVICE/DEMO/COFFEE PET NEW KEYBOARD from
£550.00 COMPUKIT UK101 KIT
UK101 BUILT
SUPERBOARD II
£228.85

STYLISH CASE-UK101/S. BOARD
TRS 80 16K LEVEL II $5 \frac{1}{4}$ DISC DRIVE for TRS80
H 14 LINE PRINTER KIT BUILT
NASCOM 2 KIT
BUILT
EXIDY SORCERER $16 / 32 / 48 \mathrm{~K}$ from
RENUMBER PROGRAM 101

	$£ 33.80$
ALL OUR	$£ 29.40$
PRICES INC.	$£ 410.50$
	$£ 586.50$
	$£ 339.25$
	$£ 420.00$
	$£ 860.00$
	$£ 4.00$

COMPUTER BOOKS - SOFTWARE
N.I.C.

61 Broad Lane, London. N15 4DJ
Day 01-808 0377 Ev. 01-889 9736

It's easy

 to complain about
advertisements.

The Advertising Standards Authority.

If an advertisement is wrong, we're here to put it right.

A.SA. Ltd. Brook House.Tormngton Piace London WCIE 7 HN.

prinited continuous starionery

we can supply Printed Continuous Forms with your Company Name \& Logo

ex-stock single-part listing paper $11 \times 8^{1 / 2}, 11 \times 9^{7 / 8}, 11 \times 10^{3 / 8}, 12 \times 8{ }^{1 / 2}, 11 \times 9^{1 / 2}$ Multiples, OTC and NCR.
for prices and details phone:-

David Richards 01.5208624

David Richards (Printers \& Distributors) Ltd. 61/63 Hoe Street London E17 4SA

8K PET PROGRAMS. Amazeing: 6 levels, time limiter - one player. Billiards: choose length, play a friend! $£ 2.00$ each or $£ 2.50$ both, on cassette. Payable to M Michalowski, 9 Holmebank East, Chesterfield, Derbys.

A SUPERCASE FOR YOUR SUPERBOARD!

Precision formed in super quality ABS - supports a TV

Complete with all screws and holes for instant fitting
Exciting Flame Red (black base) or Ivory (brown base)
COMPUKIT model too!
Instant refund guarantee - or send for leaflet and Superboard software list

MICROCASE

15 HAVELOCK ROAD BRIGHTON, SUSSEX

£27 plus VAT post free
"TURNS A BOARD INTO A REAL COMPUTER"

INTENSIVE COURSES IN

BASIC

 AND PASCALIncluding hands on mini-computer operation.
These intensive courses are intended to instruct from minimal knowledge to an operational capability of computer programming. Advanced courses also available. Courses are fully residential allowing maximum instruction and programming time for the respective periods.
BASIC - Weekend from Friday evening to Sunday afternoon.
PASCAL - Full week Monday morning to Friday Afternoon.
For further details, dates available and fees, etc. Phone (0401) 43139 or write: Dept CT2, Cleveland Business Services, Cleveland House, Routh, Beverley, North Humberside.

SCOTT SYSTEMS

High speed serial interface for APPLE 0 to 30000 baud kit $£ 25.5^{\prime \prime}$ soft sector normal density disks 2 for $\mathbf{£ 4 . 6 0}$. Box of ten $£ 22$. Z80A £12.50; 8080A £5.70; 6800 £6.50; Z80 £8.50; 2708 £6.50; 21LO2-4 85p; 21LO2-2 £1.00; 2102 70p; 1702 £4.00. PCB SKTS 8 pin - 10p; 14 - 11p; $16-12 \mathrm{p} ; 18-16 \mathrm{p}$ 20-17p; $22-19 \mathrm{p} ; 24-21 \mathrm{p} ; 28-27 \mathrm{p} ; 40$ - 37p. ELF II kit ideal for beginner $£ 65$.

Orders under £15 add 25p P\&P
PO Box 149, Crown Street, Aberdeen

uHEX EPROM PROGRAMMERS

426 2508/2708/2758/2516/2716 Dual and Single supply Eproms, $£ 95$
416 2704/2708/2716 Dual only, £65 480 2704/2708 Kit $£ \mathbf{~ 3 5}$. Built $£ \mathbf{4 0}$
All programmers require only standard power supplies.
The 426 and 416 are cased and have push-button selection.
Program any length block into the Eprom.
Software included. Range covers Z 80 8080, 6800 and 6500. State machine.
PIO, PIA INTERFACE MODULES
Available for Z80/8080 and 6800/6500.
Prices include carriane. Please add VAT. SAE for furcher product information.

MICROHEX COMPUTERS
 Union St, Trowbridge, Wilts.

EPROM BOARD FOR NASCOMS

For Nascom 1 and 2 plugs straight into Nasbus, and takes
8×2708 EPROMS plus 8 K BASIC ROM £46 fully assembled, ex-stock
Price includes VAT \& P.\&P., but excludes EPROMS, ROM and edge connector socket.
Merseyside Nascom Users Group, Samuel House, Taylor Street, Liverpool L5 5AD.

ZX80 PROGRAMS. Wide selection of lowcost games programs for your ZX80 now available. S.A.E. for details to: Tim Hartnell, 93 Coningham Road, London, W12.

FOR SALE, Triton microprocessor L41 Basic, 3 K user RAM, 1 K monitor, 2 K tiny Basic. Case and games tapes. $£ 200$. Also chess champion, 6 chess computer, $£ 35$. Contact Brian Ewan. Phone Bolton (0204) 389498.

SINCLAIR ZX80. Programs - 5 different on one cassette, includes code-breaker, hangman and moon-landing game. All fit on 1K. £2. Milner, 251 Henley Road, Coventry.
EXIDY Sorcerer Programs: Dissassembler, also original and weird games 8 K to 32 K from $£ 1$ to $£ 4$. List from RTL, West Towan House, Porthtowan, Truro, Cornwall.

CHEAP print for Nascom - complete package, includes interface and software, even paper. These are surplus teleprinters rebuilt by GPO to like new condition. Package includes conversion routines - all output printed including basic listings. P10 not needed. For any Nascom, all you need - $£ 58.50$ plus carriage. Davidson, Littlefield, Hawling, near Cheltenham.

DISK DRIVES FOR TRS-80

Shugart SA400 disk drives housed in one or two module cabinets for only
£249 and $£ 458$ - no extras our prices include power supply, cables and V.A.T. Units are ready to plug in and use.
Microline 80 Printers, Blandford Boxes, disks, tapes, paper, sleeves, manuals, etc. complete systems all at bargain prices Hardware - software

- components - ancillaries.

BLANDFORD COMPUTERS SHAFTESBURY LANE, BLANDFORD, DORSET. BLANDFORD 53737 (5 lines)
including evenings and weekends.
PET 2001 8K VGC, owner upgrading, $£ 400$, no offers, but will supply T.I.S. workbooks, magazines, cassettes, etc. totally free!! Phone Wymondham (Norfolk) (0953) 605436, 6 p.m. plus.
SINCLAIR ZX80 computer, built, plus leads and manual, $£ 80$. MK 14 ISS. 5 plus cassette interface and I/O chip, manual, £40. Can be seen working, Reading 669491.

6800 SOFTWARE EDITOR ASSEMBLER supports all Motorola mnemonics and directives FCC, FCB, FDB, ORG, EQU, RMB, REM, 4 K ROMABLE AT BOOO LISTING AND MANUAL
-DISASSEMBLER very powerful converts object code to source code in a format suitable for Reassembly, Has double check for valid Opcode.
\qquad

- REALLOCATOR Relocates your machine code programs to run at another address. Monitor subroutines are unaffected. $£ 5.50$ -Other software includes; Basics, monitors, games, etc. Send 50 p for catalogue (refundable first No. 2 Glenscal Surchase).
No. 2 Glenscale Street, Leeds LS9 9JJ. Tel: Leeds 480987. J. MORRISON (MICROS)
UK 101 SOFTWARE ON TAPE
4 k : Snakes and ladders - the board game with a
difference.
4 k : Alien Invaders - our version of the cult pub
game.
4 k : The My-mY Game - an intriguing game
against the computer.
$4 \mathrm{k}:$ Fruit Machine - make money from your
friends.
4 k : Drawing Machine - with cassette picture
storage.
$8 \mathrm{k}:$ Home Finance - can you afford to be without
it?
LATEST ADDITIONS
Programmable Sound Generator - Not just a toy,
this plugs into the J.I. socket, greatly enhancing the
ability of your UK101.
8 k : Asteroid Runner - Can you get through the
asteroid belt without mishap? Probably the best
real-time graphics on UK101
£3.00 each or f5,00 for any two including P \& P
New software always under development - S.A.E.
for details.
Cheque or P.O. to: Marick. 1 , Branksome Close,
Paignton, Devon, TQ3 1EA.

THE INTRUDERS FOR NASCOM 1 OR 2

There is now a NASCOM version of the addictive pub There is now a NASCOM version of the addictive pub game SPACE INVADERS. Full feature game with extra 3.5 K object code runs under any monitor in 5.5 K .

Send SAE for full details or for immediate delivery of this superb game. Send only $£ 10$ for object code on tape with object listing and instructions, stating which machine is in use.

Contact:
J. Atkins, 37, Wellington Road., Maidenhead. Berks., SL6 6DH.

TRITON L5.1, full $4 K$ RAM, fully built and tested, complete with documentation and leads. Easily expanded, save money over new purchase, $£ 260$. Colchester 61104.

COMPUKIT UK101 for sale. Professionally built by engineer including extra. 04 K RAM, f200. 01-907 3314 Eves.

PET 2001 - 8 K with integral cassette. Hardly used. Machine code monitor and manual. First reasonable offer around £375. Worcester 820939.

TRITON for sale, fully built and cased with self contained monitor, tape recorder, keyboard and numeric pad. Built in Motherboard with filled 8K RAM card, 7K scientific Basic on ROM card and complete power unit for expansion, $£ 550$. Byfleet 42348.

MK14 CORNER. Interface board, includes flag driven mains relays, LED indicators for all Serial I/C, D/A and single step chips, and prototype area; also suitable for other Microcomputers; PCB and circuit £3.95. Replace calculator dispiay with $\frac{1^{\prime \prime}}{2}$ FND 500's; PCB, filter, instructions £1.95. Ready built replacement keyboard £11. Useful notes on MK14 75p. Rayner, 'Kismet' High Street, Colnbrook, Bucks.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. S.A.E. FOR LISTS. $£ 1.45$ for Booklet. "Nickel Cadmium Power" plus Catalogue. Write or call: Sandwell Plant Ltd., 2 Union Drive, BOLDMERE, SUTTON COLDFIELD, WEST MIDLANDS. 021-354 9764, or see them at TLC, 32 Cravens Street, Charing Cross, London. W.C. 2.
UK101 8K RAM, fully built and operational, no snags, mint condition. Ideal for beginners. Program tapes, $£ 260$ o.n.o. Phone Potters Bar 56664 after six.

I am looking for
 3 COMPUTER PROGRAMMERS

(2 yrs COBOL/ASSEMBLER)

2 PROJECT LEADERS

for a S. E. London company.
Good pay and benefits. If you are interested in these positions, phone Jean Smith on Farnborough (Kent) 56266 , or send cv to 36 Berkeley Square, Mayfair, London W1.
dactylo Youll feel more at home with dactylo.

COMPUKIT UK10I EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

$\star 6502$ based system - best value for money on the market. \star Powerful 8 K Basic - Fastest around \star Full Qwerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board. \star Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. \star Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. \star If you want to learn about Micros, but didn't know which machine to buy then this is the machine for you.

$\begin{array}{c}\text { Buld, Understand and Program } \\ \text { your own Computer for } \\ \text { only a small outlay. }\end{array}$

KIT ONLY $\mathbf{£ 1 9 9}+$ VAT
NO EXTRAS NEEDED
AVAILABLE READY
ASSEMBLED \& TESTED
READY TO GO FOR $\mathbf{£ 2 4 9}$ + VAT

| Specally designed case for Compukit in orange/black. |
| :--- | :--- |
| With room for accessories. $\mathbf{£ 2 9 . 5 0}$ + VAT | $\mathbf{6 5 0 2 \text { Assembler/Editor for Compukit } £ 1 4 . 9 0 \text { VAT }}$

The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.

COMPUKIT UK101 • In 2 K Eprom 2716

This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use.

- Flashing cursor - Text scrolls down $£ 22.00+\mathrm{V}$

Because of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathbf{£ 1 9 9}+$ VAT

Your choice of freebies with every Nascom 2 purchased from us either FREE POWER SUPPLY OR FREE GRAPHICS ROM OR FREE VERO CASE TO TAKE NASCOM 2

> Microprocessors

INTERFACE
Keyboard
T.V.
the d
I.O.

Full Range of Software Available

The PEDIGREE PETS
Very popular for home \& business use. 8K Microsoft
Basic in ROM. 8 K Pet $32 \mathrm{~K} \& 16 \mathrm{~K}$ with new improved
keyboard. All with green Screen.
Cassette deck $\mathbf{£ 5 5}$ extra. Full range of software available.

Videa $10 \square$
12" BLACK \& WHITE W COST VIDEO
only $\mathbf{£ 7 9}$
VAT

- Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor - Composite video input puter systems - Solid-state circuitry for a stable \& sharp puter systems Solid-state circuitry for a stable \& sharp
picture Video bandwidth $-12 \mathrm{MHz}+30 \mathrm{~B}$ pedance 75 Ohms - Resolution 650 lines Minimum in pedance 75 Ohms Resolution, 650 lines Minimum in
Central 80% of CRT; 550 Lines Minimum bevond central entral
80%.
 "Europes Largest Discount

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD.. or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number. CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01.441 2922 (Sales) 01.4496596 OPEN • 10 am • 7 pm - Monday to Saturday Close to New Barnet BR Station - Moorgate Line. NOW in IRELAND at: 80 Marlborough St., Dublin 1. Tel: Dublin 749933

ONB ${ }^{2}$ SNewBear. in 1880

8300 RM PRINTER

80/132 ch per line (switchable) ; 125 c.p.s.; 2K Buffer; V24 RS232/ Current loop interface; Speed switchable between $110-9600$ baud; Double width char. available under software control; sprocket feed; 7×9 dot matrix; Paper width $4.5^{\prime \prime}$ to $9.5^{\prime \prime}$
Price
$£ 525+$ carriage

SHARP MZ80K

From $£ 480.00$
Z-80 based CPU : 4 K bytes monitor ROM; Internal memory expansion up to 48 K bytes of RAM; 14 K extended BASIC (occupies 14 K bytes of RAM) ; $10^{\prime \prime}$ video display unit - 40 characters $\times 25$ lines, 80×50 high resolution graphics; 78 key ASC11 keyboard alphabet (capital \& small) plus graphics, Built in music function; Fast reliable cassette with tape counter-1200 bits $/ \mathrm{sec}$. ; 50 pin universal BUS connector for system expansion-printers, floppy discs etc.

SPECTRONICS U.V. EPROM-ERASING LAMPS

PE14 Erases up to 6 chips, takes approx. 19 mins . £ 56.00 PE14T Erases up to 6 chips, takes approx. 19 mins . £ 76.58 PE24T Erases upं to 9 chips, takes approx. 15 mins . £111.22 PR125T Erases up to 16 chips, takes approx. 7 mins . $£ 237.84$ PR320T Erases up to 36 chips, takes approx. 7 mins . $£ 384.09$ U.V. EPROM ERASING CABINET

PC1000 Erases up to 72 chips, takes approx. 7 mins . $£ 842.83$ PC2000 Erases up to 144 chips, takes approx. 7 mins $£ 1227.69$

Zen Editor/Assembler . . £19.50 Sharp Basic Listing £30.00
Machine code tape and manual $£ 19.00$ Sharp Monitor Listing (fully commented) $£ 15.00$ Assembley code tape and manual . $£ 45.00$ Sharp basic manual 7.00

Look!

SPECIAL OFFER
2708 _ _ _ _f 5.99
4116 _ - _ _f 5.99
2716_ _ _ _ f 18.50

Z80 P10 2.5 MHz Z80 CTC 2.5 MHz
Z80 SIO
Z80A CPU 4 MHz
Z80A P 104 MHz
Z80A CTC 4 MHz
SC/MP 11
(INS 8060N)
INS 8154N
8080A
6502
6522 . . . £ 7.301791 Disc Controller
£ 12.76
f142.50 £ 142.50
$£ \quad 6.75$
£ 6.75

$Z 8001$

MC6800
MC6802
MC6821
£ $\quad 4.50$
f
MC6850
MC6810AP
MC6840

6532

ACORN

6502 Based Micro Kit
£ 65.00
£ 88.00
Mains Adaptor
£ 5.95
£ 10.79
£ 40.00
£ 49.50
DISC DRIVES
SA400 51/4" Single sided
COMPONENTS
 Tandor TM100 51/4" Double sided

Terms: Official Orders (min. £10). Barclaycard \& Access welcome. Add 15\% to hardware prices. Send for Catalogue and new (May) Booklist. All mail order to Newbury.
Mail Order \& Head Office: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505
Manchester Showroom: 220-222 Cheadle Heath, Stockport. Tel: 0614912290
Birmingham Showroom: 1st Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 0217077170

[^0]: "Pea Game" Program written in RML BASIC, users of other systems should refer to the text for notes on the conversions needed.

[^1]: Semiconductors
 IC1 ZN425E
 IC2 TBA800Q

[^2]: e.g. T/THiS WILL BE PRINTED

 T/HELLO NAME $\$$

[^3]: + 1 Regional Distributor

